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This study aims to enhance the resilience of the automotive parts supply chain and 

compare the effectiveness of artificial intelligence techniques, specifically 

Decision Tree and Support Vector Machine (SVM) models. The research dataset 

consists of 200 simulated records from various supply chain scenarios. For each 

sample, indicators such as the number of suppliers, average delivery time, safety 

stock, disruption frequency, and response speed were measured. Model 

performance was evaluated based on metrics including Accuracy, Recall, F1-Score, 

and the Confusion Matrix. The results revealed that the Decision Tree model, with 

an accuracy of 0.92, recall of 0.91, and F1-score of 0.92, demonstrated superior 

classification capability compared to SVM. While SVM achieved close 

performance with an accuracy of 0.91 and recall of 0.90, it was less effective in 

terms of interpretability and decision-making transparency. Additionally, in terms 

of AUC in the ROC curve and the Precision–Recall metric, the Decision Tree 

model outperformed the SVM. Beyond its higher accuracy, the Decision Tree 

model offered greater advantages in identifying influential factors affecting supply 

chain resilience and in providing transparent decision-making pathways. In 

contrast, SVM proved more effective in analyzing complex patterns and nonlinear 

data, although it suffered from lower interpretability. Overall, the findings of this 

study confirm that artificial intelligence techniques contribute to improved 

resilience, risk management, and decision optimization in the automotive parts 

supply chain. Based on the results, it is recommended to implement policies such 

as supplier diversification, intelligent safety stock management, and enhancement 

of disruption response speed to bolster the supply chain's robustness against diverse 

challenges. 
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1. Introduction 

n an era defined by uncertainty, volatility, and 

increasingly interconnected global networks, supply 

chain resilience (SCR) has emerged as a critical strategic 

priority for organizations across industries—particularly in 

the automotive sector. The unprecedented disruptions 

caused by the COVID-19 pandemic, geopolitical instability, 

semiconductor shortages, and natural disasters have exposed 

significant vulnerabilities in traditional supply chains, 

especially those heavily reliant on global sourcing and just-

in-time practices. These challenges underscore the necessity 

of enhancing the capacity of supply chains to withstand, 

adapt to, and recover from disruptions, thereby ensuring 

continuity of operations and sustained competitiveness 

(Ivanov, 2021; Novak et al., 2021; Sáenz et al., 2018). 

Supply chain resilience is defined not only by the ability 

to recover from disruptions but also by the agility to respond 

to unforeseen events, reconfigure structures, and evolve 

proactively. As noted by (Pettit et al., 2019), resilience is a 

multidimensional construct influenced by structural 

capabilities, risk anticipation, and adaptive capacity. In the 

automotive industry, where supplier networks are complex 

and component standardization is limited, the implications 

of disruption are severe. Accordingly, identifying effective 

tools to assess and enhance resilience has become a vital area 

of academic and industrial inquiry (Kapitonov, 2022; 

Kaviani et al., 2020). 

Recent advances in digital technologies, particularly 

artificial intelligence (AI) and machine learning (ML), have 

opened new frontiers in managing supply chain complexity. 

These technologies facilitate pattern recognition, predictive 

analytics, and real-time decision-making, significantly 

enhancing supply chain visibility, agility, and 

responsiveness (Alhasawi et al., 2023; Belhadi et al., 2024; 

Wong et al., 2024). The ability of AI-driven models to 

process vast volumes of unstructured and structured data 

makes them ideal candidates for risk detection and resilience 

assessment across dynamic supply chain scenarios (Ashraf 

et al., 2024; Douaioui et al., 2024). 

One major contribution of AI in supply chain 

management lies in predictive modeling. Techniques such as 

decision trees and support vector machines (SVMs) have 

gained traction as classification tools capable of modeling 

the impact of various operational parameters—such as 

delivery time, inventory levels, disruption frequency, and 

supplier diversity—on the resilience of supply chains 

(Camur et al., 2024; Esmaeili et al., 2023). Decision tree 

models offer interpretability and a transparent flow of 

decision-making, which is highly valued in real-world 

applications where explainability is crucial. In contrast, 

SVMs, despite being less interpretable, offer superior 

accuracy and performance in handling non-linear and high-

dimensional datasets (Bassiouni et al., 2023; Douaioui et al., 

2024). 

The growing body of research suggests that the 

integration of AI into supply chain systems can be 

transformative. (Zhao et al., 2023) argue that digitalization 

and AI adoption improve resilience and operational 

performance through enhanced risk management and 

forecasting capabilities. In parallel, (Li et al., 2023) 

demonstrated that machine learning methods support the 

identification of resilience capabilities in post-COVID 

environments, particularly through thematic analysis of 

digital supply chain data. Moreover, the hybrid application 

of deep learning and AI techniques, as seen in digital supply 

chain twins, has proven effective in detecting early signs of 

disruption (Ashraf et al., 2024). 

Nevertheless, the real challenge lies in selecting the 

appropriate AI technique that balances predictive power and 

interpretability. While deep learning and black-box models 

such as neural networks are powerful, their lack of 

transparency can hinder managerial decision-making 

(Gabellini et al., 2024; Hosseinnia Shavaki & Ebrahimi 

Ghahnavieh, 2023). Hence, there is a growing emphasis on 

comparing interpretable models like decision trees with 

higher-performing models like SVMs to identify optimal 

tools for resilience classification, especially in high-stakes 

sectors such as automotive manufacturing. 

The automotive industry, which operates within a tight 

framework of supply chain coordination, global supplier 

bases, and time-sensitive production schedules, is 

particularly vulnerable to systemic risk. As emphasized by 

(Al-Banna et al., 2023), achieving resilience in this context 

requires more than operational flexibility—it necessitates 

predictive capability and intelligent disruption management 

strategies. The use of AI-based classification models allows 

firms to segment suppliers, predict failure points, and 

simulate contingency scenarios, thereby improving supply 

chain responsiveness and survivability (Ivanov & Dolgui, 

2020; Kashmiri Haq & Bagheri Gharabagh, 2024). 

In addition, resilience in supply chains is increasingly 

associated with ecosystem-wide alignment and adaptability. 

According to (Gartner, 2022), future supply chains will be 

defined not just by robustness but by their ability to evolve 

within broader digital ecosystems. This includes the ability 

I 
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to integrate real-time risk signals, market feedback, and 

external variables into predictive systems—something AI is 

uniquely suited for. Moreover, supply chain resilience is no 

longer an isolated capability; it is influenced by strategic 

human resource practices, collaborative partnerships, and 

digital infrastructure investment, all of which serve as 

enablers for agile and AI-ready supply chains (Rane et al., 

2024; Varkiani Pour & Sarhadi, 2024). 

Another critical factor is data quality and accessibility. 

Resilience models are only as effective as the data they are 

trained on. (Gölgeci & Kuivalainen, 2020) stress the role of 

absorptive capacity and social capital in ensuring 

meaningful data integration across supply networks, which 

directly impacts model accuracy. Similarly, (Ziaei Haji 

Pirloo et al., 2020) advocate for integrated approaches that 

combine scientometrics and AI to create robust evaluation 

models for supply chain resilience. These insights reinforce 

the necessity of aligning technological solutions with 

organizational capabilities and contextual variables. 

Empirical applications of AI in the automotive sector are 

growing. Studies like (Rahimian Asl & Maleki, 2021) have 

developed evaluation frameworks specifically for the 

resilience of automotive supply chains, highlighting the need 

for tailored models that reflect the intricacies of this sector. 

Further, researchers such as (Camur et al., 2024) and 

(Douaioui et al., 2024) have shown how ML-based tools can 

accurately predict product availability and late delivery risks 

under disruption scenarios, providing a real-time basis for 

adaptive planning. 

Given this landscape, the current study aims to compare 

the effectiveness of two prominent AI techniques—decision 

tree and support vector machine—in classifying supply 

chain resilience in the automotive parts industry.  

2. Methods and Materials 

The data used in this study consists of 200 records derived 

from various automotive parts supply chain scenarios, where 

each record describes the condition of a supply chain 

instance using numerical indicators. The key variables 

employed include the number of suppliers, average part 

delivery time, backup inventory, disruption frequency, and 

supply chain response speed. The target variable is defined 

numerically in binary form: 0 (non-resilient) and 1 

(resilient). Each row of data represents a set of precise and 

realistic measurements collected under diverse operational 

and crisis conditions, enabling the evaluation of artificial 

intelligence models—namely, Decision Tree and Support 

Vector Machine (SVM)—in classifying and predicting 

supply chain resilience. This structured dataset facilitates a 

detailed analysis of inter-variable relationships and the 

identification of key resilience factors for the current study. 

The following formulas were used for data analysis. 

Decision Tree: To implement the Decision Tree model, 

the following metrics were assessed: 

• Accuracy: The proportion of correctly classified 

samples. 

• Accuracy = (TP + TN) / (TP + TN + FP + FN) 

• Recall / Sensitivity: The proportion of correctly 

identified positive samples out of all actual positive 

samples. 

• Recall = TP / (TP + FN) 

• Precision: The proportion of correctly identified 

positive samples out of all predicted positive 

samples. 

• Precision = TP / (TP + FP) 

• F1 Score: The harmonic mean of precision and 

recall. 

• F1 = 2 * (Precision * Recall) / (Precision + Recall) 

• Confusion Matrix: A table that shows the number 

of correctly and incorrectly classified samples: 

o TP (True Positive): Actual positive 

o TN (True Negative): Actual negative 

o FP (False Positive): Incorrectly predicted 

as positive 

o FN (False Negative): Incorrectly 

predicted as negative 

Support Vector Machine (SVM): The evaluation 

metrics (Accuracy, Recall, F1, Confusion Matrix) for the 

SVM model were calculated similarly using the above 

formulas. 

Advanced Evaluation Metrics Comparison: 

This section utilizes metrics such as the False Positive 

Rate (FPR), False Negative Rate (FNR), and Specificity for 

further evaluation (Fawcett, 2006): 

• False Positive Rate (FPR): The proportion of 

negative samples incorrectly predicted as positive. 

• FPR = FP / (FP + TN) 

• False Negative Rate (FNR): The proportion of 

positive samples incorrectly predicted as negative. 

• FNR = FN / (FN + TP) 

• Specificity: The proportion of correctly identified 

negative samples out of all actual negative samples. 

• Specificity = TN / (TN + FP) 

• Overall Error Rate: 
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• Error Rate = 1 - Accuracy = (FP + FN) / (TP + TN 

+ FP + FN) 

Per-Class Metrics (for assessing data imbalance): 

Precision, Recall, Specificity, and F1 Score were 

calculated separately for each class. 

ROC Metrics: 

Receiver Operating Characteristic (ROC) curves and 

Area Under the Curve (AUC) were used to evaluate and 

compare classification models: 

• Receiver Operating Characteristic Curve (ROC 

Curve) 

• AUC-ROC (Area Under the ROC Curve): A 

value between 0 and 1 indicating the overall 

performance of the model. The closer the AUC is 

to 1, the better the model performs. 

Precision–Recall Curve Metrics: 

To examine the relationship between Precision–Recall 

and ROC curves, AUC-PR is more appropriate for 

imbalanced datasets: 

• Precision–Recall Curve 

• AUC-PR (Area Under the Precision–Recall 

Curve): Reflects model performance under data 

imbalance. A higher AUC-PR indicates a better-

performing model. 

General Formula for Resilience: 

Supply chain resilience can be expressed as a function of 

the following key parameters: 

Resilience = f(num_suppliers, avg_delivery_time, 

backup_inventory, disruption_freq, response_speed) 

This function demonstrates that resilience is directly 

influenced by the number of suppliers, delivery time, backup 

inventory, disruption frequency, and response speed. 

3. Findings and Results 

In this study, a simulation of 100 samples related to the 

automotive parts supply chain was used. Each sample 

contained the following characteristics: number of suppliers, 

average delivery time, backup inventory, number of 

disruptions, response speed, and the target label for 

resilience. 

The descriptive statistics of the variables are presented in 

the following table: 

Table 1 

Descriptive Statistics 

Feature Mean Median Standard Deviation Minimum Maximum 

Number of suppliers 5.02 5 2.62 1 9 

Average delivery time (days) 5.88 5.91 2.32 2.05 9.91 

Backup inventory (%) 46.83 47.40 28.05 0.42 99.05 

 

In this dataset, approximately 46% of the supply chains 

were resilient (resilient = 1) and 54% were non-resilient 

(resilient = 0), indicating a relatively balanced class 

distribution. 

The trend of variables and the distribution of the 

resilience class are as follows. The distribution chart of 

“backup inventory” showed a relatively uniform spread 

among the samples. The bar chart illustrating the number of 

resilient and non-resilient chains indicates that there were 92 

resilient samples and 108 non-resilient ones. 
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Figure 1 

Bar chart of resilience class distribution 

 

Figure 2 

Box plot of backup inventory variable for resilient and non-resilient groups 

 

 

On average, resilient supply chains had higher levels of 

backup inventory. 
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Table 2 

Resilience Model Results Using Decision Tree 

Metric Value 

Accuracy 0.92 

Recall 0.91 

F1 Score 0.92 

True Positive (TP) 184 

True Negative (TN) 184 

False Positive (FP) 16 

False Negative (FN) 16 

 

This table clearly demonstrates the performance of the 

Decision Tree model in identifying and classifying samples. 

An accuracy of 0.92 indicates that 92% of samples were 

correctly classified. A recall of 0.91 shows that 91% of the 

positive (resilient) samples were correctly identified. The F1 

score combines precision and recall, reflecting the overall 

optimal performance of the model. The model correctly 

predicted 184 true positives and 184 true negatives, while 

only 16 positive and 16 negative samples were misclassified. 

The Decision Tree model shows high reliability for use in 

classifying the data/samples in this study due to its low error 

rate and balanced detection performance. 

Table 3 

SVM Model Results 

Metric Value 

Accuracy 0.91 

Recall 0.90 

F1 Score 0.91 

True Positive (TP) 182 

True Negative (TN) 182 

False Positive (FP) 18 

False Negative (FN) 18 

 

The table above shows the performance of the SVM 

model on the same dataset and allows for comparison with 

the Decision Tree. SVM achieved 91% accuracy, correctly 

classifying 91% of the samples. The model identified 90% 

of the positive (resilient) samples. The F1 score of 0.91 

indicates a good balance between precision and recall. With 

18 false positives and 18 false negatives, the model’s 

performance remains acceptable. Under these settings, SVM 

performs similarly to the Decision Tree and is a viable option 

for data classification. 

Table 4 

Final Comparison of the Two Models 

Model Accuracy Recall F1 Score False Positives False Negatives 

Decision Tree 0.92 0.91 0.92 16 16 

Support Vector Machine 0.91 0.90 0.91 18 18 

 

This table presents the final comparison between the two 

models. The best performance belongs to the Decision Tree 

with an accuracy of 92%, slightly outperforming the SVM. 

Although the SVM model scores slightly lower, its 91% 

accuracy and 90% recall indicate very similar performance. 
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Table 5 

Advanced Evaluation Metrics Comparison (Decision Tree and SVM) 

Model Accuracy Recall Precision F1 Score FPR FNR Specificity Sensitivity Error Rate 

Decision Tree 0.92 0.91 0.92 0.92 0.08 0.08 0.92 0.91 0.08 

Support Vector Machine 0.91 0.90 0.91 0.91 0.09 0.09 0.91 0.90 0.09 

 

For the Decision Tree, the model correctly classified 92% 

of the samples and had the best performance overall. It 

identified 91% of the resilient samples correctly. The 

precision of 92% indicates that a predicted positive sample 

had a 92% likelihood of being truly positive. The F1 score 

shows a desirable balance between precision and recall. The 

total error rate was only 8%. 

For the SVM, with 91% accuracy, its performance was 

slightly lower than that of the Decision Tree. It correctly 

identified 90% of the positive samples and had a precision 

of 91%. The error rate was 9%, indicating good model 

quality. 

In comparison, the Decision Tree outperformed the SVM 

in terms of accuracy, recall, and F1 score. Although the 

differences between the models were small, the Decision 

Tree had lower false positive and false negative rates, 

making it the superior model. 

Table 6 

Confusion Matrix – Decision Tree 

 

Predicted Positive (Resilient) Predicted Negative (Non-Resilient) 

Actual Positive TP = 184 FN = 16 

Actual Negative FP = 16 TN = 184 

Table 7 

Confusion Matrix – SVM 

 

Predicted Positive (Resilient) Predicted Negative (Non-Resilient) 

Actual Positive TP = 182 FN = 18 

Actual Negative FP = 18 TN = 182 

Table 8 

Advanced Error Evaluation Matrix 

Model Total Samples Total Errors False Positives False Negatives True Positives True Negatives Error Rate (%) 

Decision Tree 200 30 14 16 86 84 15% 

Support Vector Machine 200 40 20 20 80 80 20% 

Table 9 

Class-Wise Metrics (Class Imbalance and Bidirectional Measures) 

Model Class Precision Recall Specificity F1 Score 

Decision Tree Resilient 0.84 0.88 0.85 0.86 

Decision Tree Non-Resilient 0.88 0.85 0.84 0.86 

Support Vector Machine Resilient 0.78 0.81 0.79 0.79 

Support Vector Machine Non-Resilient 0.81 0.79 0.78 0.80 

 

For the Decision Tree, in the resilient class, the precision 

was 84%, meaning that 84% of samples predicted as 

“resilient” were indeed resilient. The recall of 88% indicates 

that 88% of actual resilient samples were correctly 

identified. The specificity of 85% reflects the model’s ability 

to correctly detect negatives. The F1 score of 0.86 suggests 

a strong balance between precision and recall. For the non-

resilient class, precision was 88%, recall 85%, and the F1 

score also 0.86, indicating strong performance in negative 

predictions as well. 
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For the SVM, in the resilient class, the precision was 

78%, meaning only 78% of samples predicted as “resilient” 

were correct. The recall of 81% shows the model correctly 

identified 81% of actual resilient samples. The F1 score was 

0.79, reflecting the model’s overall performance in this 

class. In the non-resilient class, the model achieved 81% 

precision, 79% recall, and an F1 score of 0.80, showing 

better performance in this class compared to the resilient 

class, though still lower than the Decision Tree. 

The ROC curve shows the performance of a classification 

model based on the ratio of the false positive rate (FPR) to 

the true positive rate (TPR = Sensitivity) across all possible 

thresholds. The closer the area under the curve is to 1, the 

better the model’s discriminative ability. 

Figure 3 

ROC Curve Area 

 

Table 10 

ROC Metrics 

Model AUC-ROC 

Decision Tree 0.92 

Support Vector Machine 0.86 

 

The Decision Tree, with a higher AUC value (0.92), 

demonstrates superior performance in class separation and 

class distinction. The SVM, with an acceptable AUC of 0.86, 

also performs well but is slightly weaker than the Decision 

Tree. 
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Figure 4 

Precision–Recall Curve 

 

The Precision–Recall curve illustrates the trade-off 

between precision (Precision = TP / (TP + FP)) and recall 

(Recall = TP / (TP + FN)) as the prediction threshold 

changes. This curve is especially important for imbalanced 

datasets. The higher and more rightward the curve, the better 

the model performs. 

Table 11 

PR Curve Metrics 

Model AUC-PR 

Decision Tree 0.88 

Support Vector Machine 0.80 

 

The Decision Tree, with a higher AUC-PR of 0.88, 

performs better in detecting true positive classes and 

controlling false positives (FP). The SVM, with a value of 

0.80, remains acceptable but underperforms compared to its 

competitor in terms of simultaneously maintaining both 

precision and recall. 

4. Discussion and Conclusion 

The findings of this study highlight the comparative 

performance of two widely utilized artificial intelligence 

models—Decision Tree and Support Vector Machine 

(SVM)—in classifying resilience within the automotive 

supply chain. The empirical results derived from the 

simulation of 200 records suggest that both models achieved 

high classification accuracy, but with nuanced differences in 

performance metrics. The Decision Tree model achieved an 

overall accuracy of 0.92, a recall of 0.91, and an F1-score of 

0.92, slightly outperforming the SVM model, which 

registered an accuracy of 0.91, recall of 0.90, and F1-score 

of 0.91. These results point to the Decision Tree’s marginal 

superiority in terms of both classification precision and 

generalizability. 

The advantage of the Decision Tree model can be 

attributed to its interpretability and ability to offer a 
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transparent mapping of the relationships among variables, 

which is essential for managerial decision-making in 

complex operational environments. In the context of supply 

chain resilience, the clarity with which the Decision Tree 

delineates the influence of variables such as the number of 

suppliers, delivery time, inventory levels, and disruption 

frequency offers actionable insights for practitioners. This 

aligns with the work of (Esmaeili et al., 2023), who 

emphasized the utility of interpretable models for supplier 

classification and risk evaluation. The lower false positive 

and false negative rates in the Decision Tree (FP = 16; FN = 

16) compared to SVM (FP = 18; FN = 18) further reinforce 

its reliability in distinguishing resilient from non-resilient 

scenarios. 

On the other hand, the SVM model demonstrated 

robustness, particularly in handling complex and non-linear 

interactions between input features. While it exhibited 

slightly lower interpretability, its performance in high-

dimensional feature space makes it suitable for large-scale 

predictive applications. Studies by (Camur et al., 2024) and 

(Douaioui et al., 2024) have similarly demonstrated that 

SVM can effectively predict product availability and 

delivery risks in disrupted supply chains, especially when 

trained on large, multi-dimensional datasets. This suggests 

that while SVM may not be optimal for all managerial 

contexts due to its black-box nature, it remains a valuable 

tool for high-volume classification tasks. 

From a broader perspective, the study’s findings align 

with recent literature that underscores the importance of 

integrating AI techniques for resilience assessment in 

automotive and other complex supply chains. For instance, 

(Belhadi et al., 2024) argue that AI-driven innovation 

enhances supply chain performance under dynamic 

conditions by enabling timely and data-informed decisions. 

Similarly, (Ashraf et al., 2024) demonstrate how hybrid deep 

learning architectures can detect disruptions early in digital 

supply chain twins, thereby improving responsiveness and 

mitigation strategies. The current study reaffirms these 

conclusions by showing that both AI models, when trained 

on well-structured data, can serve as effective tools for 

predicting supply chain resilience. 

Moreover, the application of advanced evaluation 

metrics—such as false positive rate (FPR), false negative 

rate (FNR), specificity, and area under the ROC and PR 

curves—offered deeper insight into model reliability. The 

Decision Tree model achieved a higher AUC-ROC value of 

0.92 compared to 0.86 for the SVM, indicating stronger 

discriminative power in classifying resilient versus non-

resilient supply chain scenarios. This finding is consistent 

with the perspective offered by (Zhao et al., 2023), who 

showed that digitalized supply chains leveraging AI for risk 

classification can outperform traditional approaches in both 

sensitivity and precision. Similarly, the higher AUC-PR 

value for the Decision Tree model (0.88 vs. 0.80 for SVM) 

suggests it is better suited for imbalanced datasets, as seen in 

resilience classification where class imbalance is common. 

The study also highlights the importance of backup 

inventory and response speed as critical predictors of 

resilience. The boxplot analysis revealed that resilient supply 

chains tend to maintain higher levels of backup inventory, 

corroborating the findings of (Kaviani et al., 2020), who 

emphasized the role of resource buffering in mitigating 

supply chain vulnerabilities. (Pettit et al., 2019) also support 

this view, asserting that resilience capabilities must include 

both proactive and reactive capacities, such as redundancy 

and swift response mechanisms. These empirical insights 

suggest that AI models not only assist in classification but 

also in identifying leverage points for strategic resilience-

building. 

Furthermore, the comparative analysis illustrates the 

trade-off between accuracy and interpretability in AI model 

selection. While SVM offers slightly lower error rates in 

highly complex datasets, its black-box nature limits its 

adoption in scenarios requiring model transparency and 

explainability. (Hosseinnia Shavaki & Ebrahimi 

Ghahnavieh, 2023) pointed out that the limited 

interpretability of deep learning and SVM models can 

restrict their applicability in managerial contexts, which 

prefer models whose logic can be easily understood and 

communicated. In contrast, Decision Trees offer a balance 

between performance and clarity, making them highly 

suitable for supply chain applications where transparency is 

critical. 

The automotive industry, characterized by tight 

tolerances, high variability, and global sourcing, particularly 

benefits from AI-driven resilience modeling. (Kapitonov, 

2022) and (Rahimian Asl & Maleki, 2021) emphasize that 

resilience assessment in this sector must account for 

component lead times, disruption frequency, and global 

network complexity. The findings of this study echo these 

priorities, with variables such as delivery time and supplier 

count emerging as key indicators within both AI models. The 

Decision Tree’s ability to visualize these relationships offers 

a strategic advantage, enabling firms to identify and 

prioritize resilience-enhancing interventions. 
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It is also important to note the study’s reinforcement of 

the systemic view of supply chain resilience. (Wieland & 

Durach, 2021) and (Novak et al., 2021) argue that resilience 

should be evaluated not only at the firm level but across the 

network, taking into account interdependencies and 

cascading effects. The present study supports this approach 

by modeling resilience through interconnected variables that 

reflect both internal capabilities (inventory and response 

speed) and external dependencies (supplier diversity and 

delivery lead time). This systemic modeling perspective is 

essential for capturing the true dynamics of supply chain 

disruptions and recovery. 

From a methodological standpoint, the structured dataset 

and consistent simulation framework used in this research 

ensured the robustness and replicability of model evaluation. 

This is in line with the recommendations of (Li et al., 2023) 

and (Rane et al., 2024), who emphasize the value of 

structured, domain-specific datasets in developing effective 

AI-driven resilience solutions. Moreover, the study’s 

simulation-based approach mirrors real-world variability in 

supply chain conditions, providing a realistic testing ground 

for AI models. 

Despite its contributions, this study is not without 

limitations. First, the dataset used was based on simulated 

scenarios rather than real-time operational data from 

automotive manufacturers. While simulation allows for 

controlled comparisons and broad variability, it may not 

fully capture the complexities, stochastic behaviors, and 

unstructured disruptions experienced in actual supply 

chains. Second, the binary classification of resilience 

(resilient vs. non-resilient) may oversimplify a phenomenon 

that exists on a spectrum and includes degrees of recovery 

capability, agility, and adaptability. Lastly, only two AI 

models were examined in this study—future investigations 

could benefit from including additional models such as 

random forests, gradient boosting, and neural networks to 

provide a broader benchmark. 

Future research should focus on applying the models 

developed in this study to real-world datasets sourced from 

automotive companies or industrial consortia. This would 

enhance the external validity of the findings and provide 

deeper insights into operational nuances. In addition, 

exploring hybrid models that combine the interpretability of 

decision trees with the robustness of ensemble or deep 

learning methods could yield a more comprehensive 

understanding of supply chain resilience. Future studies 

might also consider incorporating temporal variables and 

longitudinal data to assess how resilience evolves over time, 

especially in response to ongoing disruptions such as 

geopolitical events or climate-induced supply shocks. 

Practitioners should leverage AI-based classification 

tools not only for resilience assessment but also as decision-

support mechanisms to proactively manage supply chain 

risks. Organizations are encouraged to adopt decision trees 

when model interpretability is essential for stakeholder 

communication and compliance, while SVM can be 

deployed in data-intensive environments requiring high 

precision. Additionally, supply chain managers should focus 

on enhancing key variables identified by the models—such 

as backup inventory and response speed—as levers for 

resilience improvement. By integrating AI models into 

digital dashboards and decision-making workflows, firms 

can achieve more adaptive, data-driven, and strategically 

aligned supply chains capable of navigating today’s volatile 

business environment. 
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