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The rapid growth of technology and the emergence of new production processes,
along with the substitution of synthetic materials and chemical compounds, have
resulted in an increased volume of industrial waste and, in some cases, the
generation of hazardous waste. Improper handling, transportation, and disposal of
this waste, part of which contains dangerous substances, pose serious challenges to
human health and the environment. Under such circumstances, establishing an
efficient reverse logistics network emerges as an inevitable necessity. With
growing social concerns about environmental issues, reverse logistics has become
increasingly integrated with waste management, and the management of industrial
waste is now considered a core pillar of reverse supply chain management. This
study, employing the grounded theory method based on the Strauss and Corbin
(1998) model and using the insights of 17 academic and industrial experts in the
national gas refining sector, proposes a comprehensive model for the reverse supply
chain of waste in this industry. The analysis of data obtained from semi-structured
interviews led to the identification of 25 core concepts categorized into six main
themes. The application of Interpretive Structural Modeling (ISM) revealed
hierarchical and causal relationships among these factors, indicating that
regulations and policies, infrastructure, and organizational culture act as
fundamental and driving forces with the greatest impact on the success of the
system. This paradigmatic model can serve as a roadmap for managers in the gas
refining industry to design and implement an effective and sustainable reverse
logistics system.

Keywords: Reverse logistics supply chain, industrial waste, gas refining industry,
grounded theory, interpretive structural modeling (ISM)



https://doi.org/10.61838/kman.jrmde.3.1.9
http://creativecommons.org/licenses/by-nc/4.0
http://creativecommons.org/licenses/by-nc/4.0
https://orcid.org/0000-0002-9438-1750
https://orcid.org/0009-0000-4051-7950
https://orcid.org/0000-0001-6926-9161
https://crossmark.crossref.org/dialog/?doi=10.61838/kman.jrmde.3.1.9
http://creativecommons.org/licenses/by-nc/4.0

Ramezani et al.
MAN

PUBLISHING INSTITUTE
1. Introduction

he rapid industrial expansion and technological

progress of the past decades have accelerated the
complexity of global supply chains, while simultaneously
intensifying environmental and sustainability concerns.
Among these, the accumulation of industrial waste and the
increasing societal and regulatory pressure for sustainable
production and consumption patterns have pushed
organizations to rethink how they design, operate, and
monitor supply networks. Reverse logistics, once perceived
primarily as a cost recovery mechanism, has emerged as a
strategic, sustainability-driven function essential for waste
minimization, resource recovery, and competitive
differentiation (Guarnieri et al., 2020; Meilenda & Syarif,
2024). In particular, integrating reverse flows into traditional
supply chains—known as closed-loop supply chain
management—has become a key response to regulatory
mandates, environmental challenges, and the circular
economy agenda (Khosravi et al., 2019; Neha et al., 2023).

Reverse logistics encompasses the systematic process of
moving products or by-products from the point of
consumption back to the origin or designated facilities for
proper reuse, recycling, remanufacturing, or disposal
(Guarnieri et al., 2020). Its scope extends beyond simple
product returns, encompassing the recovery of valuable
materials, the safe handling of hazardous substances, and the
mitigation of environmental impacts from industrial
production (Yu et al., 2020a). Industrial sectors such as
automotive, petrochemical, and electronics generate vast
quantities of complex waste streams that require
sophisticated, technology-driven reverse logistics networks
(Aghaeipour & Pirdasht, 2022; Gharaakhani, 2022). In the
automotive sector, for example, challenges include the safe
treatment of end-of-life vehicles and the recovery of high-
value components under sustainability criteria (Aghaeipour
& Pirdasht, 2022; Islampanah et al., 2023). Similarly, in oil
and gas supply chains, particularly in regions like
Gachsaran, barriers such as infrastructure gaps, fragmented
oversight, and uncertain regulatory compliance impede
reverse logistics adoption (Ghazifard & Rasouli, 2021; Qazi
Far & Rasouli, 2021).

Industrial waste in large energy complexes, including gas
refineries, poses unique challenges due to hazardous by-
products, stringent environmental regulations, and
operational complexity. Proper handling and valorization of
such waste can create new economic and environmental
value streams but require systemic redesign and advanced
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planning (Taheri et al., 2022). As environmental concerns
intensify globally, industries face increasing expectations to
adopt circular economy principles and to integrate reverse
flows across their networks, ensuring both compliance and
competitiveness (Meilenda & Syarif, 2024; Mugoni et al.,
2023).

Sustainability has moved beyond corporate social
responsibility to become a strategic imperative influencing
supply chain design (Mugoni et al., 2023; Singh et al., 2025).
Reverse logistics networks directly contribute to multiple
sustainability pillars: environmental preservation by
reducing landfill waste and pollution, economic resilience
through cost recovery and secondary markets, and social
value creation by addressing public health and community
expectations (Guarnieri et al., 2020; Yu et al., 2020b).
Empirical studies show that adopting eco-design and
sustainable technology enhances reverse logistics efficiency
and resilience under demand uncertainty (Hsin et al., 2023;
Neha et al., 2023). Moreover, integrating digital intelligence
and artificial intelligence (Al) tools can significantly
optimize waste monitoring, routing, and resource allocation
(Mohghar et al., 2024), reducing system uncertainty and
improving cost-effectiveness.

The regulatory environment is another critical driver.
Comprehensive, enforceable environmental regulations and
extended producer responsibility (EPR) schemes push
industries to reclaim and responsibly process waste
(Guarnieri et al., 2020; Kouchaki Tajani et al., 2022). In the
Iranian context, gaps in environmental governance and
fragmented enforcement have often slowed the
institutionalization of reverse logistics (Vaez & Shahbazi
Chagani, 2022). However, studies reveal a growing
alignment between policy and operational needs, with new
frameworks encouraging systemic reverse logistics
deployment in energy and manufacturing (Ghazifard &
Rasouli, 2021; Tavakoli et al., 2023). Policies that
incentivize investment in infrastructure, combined with
strict compliance monitoring, can reduce uncertainty and
foster sustainable industrial waste networks (Alimi et al.,
2022).

Despite the strategic benefits, implementing reverse
logistics remains challenging, particularly in emerging
economies where infrastructural, cultural, and managerial
barriers persist (Gharaakhani, 2022; Vaez & Shahbazi
Chagani, 2022). Insufficient investment in physical
infrastructure such as specialized collection centers and
recycling facilities limits system scalability (Islampanah et
al., 2023; Taheri et al., 2022). Managerial barriers—such as


https://journals.kmanpub.com/index.php/jppr/index

Ramezani et al.
MAN

PUBLISHING INSTITUTE

limited top management commitment and inadequate
employee training—further weaken execution (Alimi et al.,
2022; Kouchaki Tajani et al., 2022). Cultural resistance to
sustainability and risk-averse organizational structures also
impede innovation in reverse supply networks (Khosravi et
al., 2019; Miraghaei, 2020).

Moreover, the technological dimension plays a pivotal
role. Digitalization and Industry 4.0 technologies enable
smart tracking of waste streams, predictive analytics, and
automation, but require upfront investment and
organizational readiness (Mohghar et al., 2024; Mugoni et
al.,, 2023). Advanced decision-support systems and
metaheuristic optimization models have been proposed to
address network complexity under uncertainty (Aghaeipour
& Pirdasht, 2022; Meilenda & Syarif, 2024). These models
help organizations determine optimal facility locations,
design resilient networks, and minimize environmental
impacts while maintaining cost efficiency (Nehaetal., 2023;
Yu et al., 2020a).

In recent years, multi-method approaches have been
emphasized for modeling reverse logistics under
sustainability constraints. Grounded theory has been used to
conceptualize complex socio-technical factors shaping
waste management systems (Jafari et al., 2020; Miraghaei,
2020). Additionally, Interpretive Structural Modeling (ISM)
combined with MICMAC analysis has proven effective in
structuring causal and hierarchical relationships among
barriers and enablers (Gharaakhani, 2022; Vaez & Shahbazi
Chagani, 2022). However, many prior studies focus on
sector-specific or partial frameworks without fully
integrating institutional, technological, managerial, and
environmental dimensions into a cohesive model (Alimi et
al., 2022; Islampanah et al., 2023).

The energy sector, particularly gas refining, remains
underexplored  despite its strategic environmental
significance and waste complexity (Taheri et al., 2022).
While research has addressed end-of-life vehicle recovery
(Aghaeipour & Pirdasht, 2022), packaging waste (Guarnieri
et al., 2020), and e-waste in electronics (Singh et al., 2025),
comprehensive frameworks tailored for hazardous industrial
waste in refineries are limited. Studies call for context-
specific models that consider regulatory dynamics,
infrastructure  gaps, cultural  change, managerial
empowerment, and technological enablers (Islampanah et
al., 2023; Khosravi et al., 2019; Mohghar et al., 2024).

Evidence consistently shows that reverse logistics
implementation is not merely a technical challenge but an
organizational transformation requiring strong governance
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and leadership (Alimi et al., 2022; Lal bar & Hassani, 2022).
Managerial capability, political and institutional alignment,
and knowledge management dynamics shape the
adaptability and sustainability of supply chains (Alimi et al.,
2022; Lal bar & Hassani, 2022). Effective knowledge
sharing improves coordination across the reverse chain,
mitigates uncertainty, and supports resilience in volatile
markets (Alimi et al., 2022). Furthermore, top management
support and strategic planning enable integration of reverse
logistics with core business strategies, shifting it from a cost-
driven to a value-generating function (Mohghar et al., 2024;
Vaez & Shahbazi Chagani, 2022).

Organizational culture is equally critical. Cultures
fostering environmental responsibility and innovation
accelerate adoption of sustainable practices (Khosravi et al.,
2019; Miraghaei, 2020). Conversely, rigid, compliance-only
mindsets hinder adaptation and fail to harness reverse
logistics as a competitive advantage. Structural agility—
through decentralized decision-making and flexible process
design—can bridge the gap between regulatory compliance
and strategic opportunity (Kouchaki Tajani et al., 2022;
Mugoni et al., 2023).

Advanced modeling and optimization techniques
continue to reshape reverse supply chain design.
Metaheuristic algorithms allow solving high-dimensional,
multi-criteria problems typical of industrial waste flows
(Aghaeipour & Pirdasht, 2022; Neha et al., 2023). Intelligent
networks leveraging vehicle-to-vehicle communication and
real-time data analytics improve cost-efficiency and
environmental outcomes (Hsin et al., 2023; Islampanah et
al., 2023). System dynamics approaches clarify knowledge
behavior and feedback loops influencing sustainable
transport and logistics (Alimi et al., 2022). Combining these
with qualitative tools such as ISM can produce
comprehensive, actionable frameworks for decision-makers.

In light of these developments, designing a context-aware
reverse logistics supply chain model for industrial waste in
the gas refining sector is both timely and necessary. Prior
studies provide valuable methodological tools but often lack
holistic integration of multi-level factors—from regulatory
and infrastructural enablers to cultural and technological
readiness. There is a need to synthesize grounded qualitative
insights from industry experts with rigorous structural
modeling to identify causal pathways and strategic leverage
points (Gharaakhani, 2022; Mohghar et al., 2024; Vaez &
Shahbazi Chagani, 2022). This integration can overcome the
fragmentation seen in prior research and deliver practical
guidance for policymakers and managers striving for
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sustainability and competitiveness (Meilenda & Syarif,
2024; Mugoni et al., 2023; Singh et al., 2025).

This study addresses that gap by employing a mixed
qualitative—quantitative approach. It first applies grounded
theory to capture deep contextual knowledge about barriers,
drivers, and strategic actions from industry and academic
experts.

2.  Methods and Materials

This study aimed to design and present a reverse logistics
supply chain model for industrial waste in the national gas
refining industry by employing a mixed-method approach
conducted in two qualitative and quantitative phases. In
terms of purpose, the present research is fundamental, and
from a methodological perspective, it is exploratory, using a
qualitative approach that integrates grounded theory and
Interpretive Structural Modeling (ISM). The statistical
population consisted of academic experts and industrial
managers active in the field of reverse logistics and waste
management in the gas refining industry, selected
purposefully through the snowball sampling technique.

In the first phase, which applied grounded theory,
interviews were conducted with 17 experts, including
university faculty members and senior managers in the gas
refining industry. Semi-structured interviews were carried
out and continued until theoretical saturation was reached,
which occurred after the eleventh interview but was
extended to 17 interviews to enhance validity. In the second
phase, which used the ISM method, 10 experts with

Table 1

Qualitative Coding Reliability Results (Inter-Coder Agreement)

Journal of Resource Management and Decision Engineering 3:1 (2024) 58-71

sufficient experience and expertise in reverse logistics and
supply chain management participated. Data in this phase
were collected through a structured questionnaire. Data
analysis in the qualitative phase was performed through
open, axial, and selective coding, leading to the extraction of
25 final factors grouped into six core categories. In the
quantitative phase, ISM was applied to determine the
hierarchical structure and causal relationships among the
factors and to design the final model.

Multiple strategies were used to ensure validity. In the
qualitative phase, member checking was applied, whereby
participants reviewed and confirmed the interviews and
extracted codes. Additionally, the involvement of academic
and industrial experts and the combined use of grounded
theory and ISM enhanced construct validity. In the
quantitative phase, the expert panel approved the research
instrument (ISM questionnaire) in terms of content validity.

Reliability was ensured by calculating inter-coder
agreement through the involvement of two independent
researchers during the coding process, achieving an
acceptable agreement level (above 80%). Internal
consistency was further strengthened by rechecking the
codes at different time intervals and by providing a detailed
description of the research process to enable replication. To
enhance the trustworthiness of the ISM phase, inconsistency
rates in pairwise comparisons were calculated, and values
below 0.1 were considered acceptable thresholds. Iterative
reviews by experts were performed throughout the ISM
analysis stages, and the final hierarchical structure was
validated and approved by all experts.

Coding Stage Number of Codes Agreed Codes Agreement (%) Notes
Open Coding 87 75 86.2% Minor discrepancies in 12 codes
Axial Coding 45 40 88.9% Differences in 5 codes
Selective Coding 25 23 92.0% Differences in 2 codes
Total 157 138 87.9% Overall average
Table 2

ISM Method Reliability — Inconsistency Rate

Expert Group Number of Comparisons Inconsistent Comparisons Inconsistency Rate Status

Academic Experts (5) 150 12 0.08 Acceptable
Industrial Managers (5) 150 14 0.093 Acceptable
Total 300 26 0.087 Acceptable
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3. Findings and Results

For data analysis, the Strauss and Corbin approach was
used. The researcher applied constant comparative analysis,
listening to and transcribing interviews verbatim, keeping
field notes, conceptualizing processes, and gradually
shaping theoretical insights. Each interview was coded and
analyzed before conducting the next one. The coding process
included three stages: open coding, axial coding, and
selective coding.

Open coding is an analytical process through which
concepts are identified, and their properties and dimensions
are discovered in the data. At this stage, each interview was
listened to and read several times, key sentences were
extracted, and text-based codes derived from the
participants’ statements or the researcher’s interpretations
from field notes were recorded.

Axial coding involves connecting concepts to form
categories. It is called axial because the process revolves
around a central category. At this stage, the grounded
theorist selects a key concept identified during open coding,
places it within the phenomenon under study, and links other
concepts to it.

Selective coding is the process of integrating and refining
categories to build theory. Here, the grounded theorist
develops a core theoretical framework connecting the
categories identified during axial coding. After each
interview was transcribed, the text was entered into
qualitative data analysis software for open coding, followed
by subsequent interviews. All conversations were recorded
and later transcribed verbatim. Data were analyzed by
reading the texts and extracting both explicit and latent codes
from the content. Following Strauss and Corbin’s systematic
approach, causal conditions affecting core categories, the
influence of these categories on strategies, intervening and
contextual conditions affecting strategies, and ultimately the
outcomes and consequences of strategies were identified.

The next step, axial coding, involved relating categories
to subcategories, as coding revolved around a central
category, linking categories by their properties and
dimensions. Constant comparison of codes was necessary;
each category was compared to others to ensure clear

62

Journal of Resource Management and Decision Engineering 3:1 (2024) 58-71

differentiation. The process then focused on the causal
conditions leading to the main phenomenon, the context in
which the phenomenon occurred, and the strategies applied
to manage it, culminating in selective coding and identifying
the core variable.

Causal Conditions

These refer to events or factors that lead to the emergence
or development of a phenomenon. According to the analysis,
the categories of standardization, scheduling, organizational
survival, feedback and learning, and regulations and policies
were identified as the causal conditions of the research.

Core Categories

A core category is one that can integrate other categories
and appears frequently across the data. The analysis revealed
that waste management, specialized human resources,
technology, and communications were selected as the core
categories.

Intervening/Facilitating Conditions

These are general contextual factors influencing the
strategies. In this research, training of employees and
managers, infrastructure, top management support, internal
and external environmental conditions, and supervisory
bodies were identified as intervening or facilitating
conditions.

Contextual Conditions

This refers to specific circumstances at a particular time
and place that shape the environment in which the
phenomenon occurs. Based on the analysis, organizational
culture, organizational structure, and planning were
identified as contextual conditions.

Strategies

Strategies are actions or interactions resulting from the
core phenomenon. In this study, process management and
digitalization, flexibility, and alignment and coherence were
categorized as key strategies.

Results and Consequences

Consequences represent the outcomes resulting from
implementing the identified strategies. According to the
analysis, the consequences were grouped into five main
categories: cost management, community satisfaction,
reduction of environmental pollution, reduction of raw
material consumption, and risk management.
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Table 3

Interviewee Information

1D Interview Group Academic/Professional Background
P1 Industry Expert Technology Management
p2 Industry Expert Industrial Management
P3 Industry Expert Industrial Management
P4 Industry Expert Systems Management

P5 Industry Expert Industrial Engineering

P6 Industry Expert Industrial Engineering

P7 Industry Expert Industrial Engineering

P8 Industry Expert Industrial Management
P9 Industry Expert Industrial Management
P10 Industry Expert Industrial Engineering
P11 Industry Expert Industrial Engineering
P12 Industry Expert Industrial Management
P13 Industry Expert Industrial Engineering
P14 Academic Expert Industrial Management
P15 Academic Expert Industrial Engineering
P16 Academic Expert Industrial Engineering
P17 Academic Expert Production Management

A detailed list of the components and variables related to
the main categories, along with experts’ opinions on each

component, is presented in the subsequent table.

Table 4

List of Research Components

Main Categories

Component

Experts’ Opinions by Identifier

Causal Conditions

Core Factors

Interfering/Facilitating
Factors

Contextual Conditions

Strategies

Outcomes

Standardization
Timing/Scheduling
Organizational Survival
Feedback and Learning

Laws and Regulations

Waste Management

Skilled Human Resources
Technology

Communications

Staff and Management Training

Infrastructure
Top Management Support

Internal and External Environmental
Conditions

Regulatory Bodies

Organizational Culture

Organizational Structure

Planning

Process Management and Smartization
Flexibility

Alignment and Coordination

Cost Management

p1, p3, p6, p9, p13, p15, p16, p17
P2, p4, p7, p8, pl11, p10, pl4

P3, p5, p6, p12, p13

P1, p5, p6, p8, pl11, p16, pl7

P2, p6, p7, p9, p10, p13, pl4

P1, P2, P3, P7, P13, P14

p7, p8, pl11, p10, p12

p5, p6, p8, pl1, p12, p13, p17
p9, p10, p13, p14, p15, p16, p17

P1, P2, P3, P5, P6, P7, P9, P10, P11, P13, P15, P16

P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12
p4, p5, p6, p7, p8, p9, p10, pl1, pl6, p17

p3, p7, p13, p14, p17

P2, P3, P7, P13, P14, P15, P16, P17
P1, P2, P3, P4, P5, P8, P11, P16, P17
P4, P5, P6, P9, P13, P14

P2, P3, P4, P5, P9, P12, P13

P2, P3, P4, P5, P9, P11, P13, P16
P3, P5, P9, P13

P2, P3, P5, P10, P11

P1, P2, P3, P5, P6, P7, P9, P10, P11, P13, P15, P16

Community Satisfaction
Reduction of Environmental Pollution

P1, P2, P3, P5, P6, P7, P9, P10, P11, P13, P15, P16, P17
P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16,
P17

P1, P2, P3, P4, P5, P6, P7, P8, P12, P13, P14, P15, P16, P17
P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P15, P16, P17

Reduction of Raw Material Usage
Risk Management
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Considering the classification of the extracted categories
and the determination of relationships among them, the
conceptual model of the study is shown in the figure below.

Figure 1

Conceptual Model of the Study

Interfering/
Facilitating

Factors
Staff and
Management
Training c I
Outcomes Core Factors ausa
Infrastructure Conditions
Top
Management
1 Support
Cost Internal and
1 External
Management Strategles Environmantal
Conditions Standardization
Community Regulatory Waste _
Satisfaction Bodies Management Timing/
Scheduling
Process . Organizational
Management Skilled Human Survival
Reducti f -— d Resources
Eniiri?l‘::n‘:al 5 T|1 ti Faadback and
martization i
Pollution Technology Learning
PR * Communications
Flexibility Laws and
Regulations
Reduction of .
Raw Material Alignment
Usage and
Coordination
Risk Contextual
Management Conditions

After extracting 25 final components through grounded
theory and aiming to determine the causal-influential
structure among these components, the Interpretive
Structural Modeling (ISM) method was employed. The
opinions of 10 experts (including faculty members and
industrial managers familiar with reverse supply chains and
waste management) were aggregated. For each pair of
components, causal relationships were determined using the

64

QOrganizational
Culture

Organizational
Structure

Planning

symbols V/A/X/O. The resulting Structural Self-Interaction
Matrix (SSIM) was converted into a binary reachability
matrix. Transitivity was then applied, and through level
partitioning, the hierarchical structure of the factors was
derived. Subsequently, MICMAC analysis was conducted to
calculate the driving power and dependence of each factor,
classifying them as independent, linkage, dependent, or
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autonomous. The steps of implementing the ISM method are First, the identified factors were coded using English
detailed below. abbreviations as shown in the table below.

Table 5

Coding of Identified Factors

Code Factor
C1 Standardization
Cc2 Timing/Scheduling
C3 Organizational Survival
C4 Feedback & Learning
C5 Laws & Regulations
C6 Waste Management
C7 Skilled Human Resources
C8 Technology
C9 Communications
C10 Staff & Management Training
C11 Infrastructure
C12 Top Management Support
C13 Internal & External Environmental Conditions
Cl4 Regulatory Bodies
C15 Organizational Culture
C16 Organizational Structure
C17 Planning
C18 Process Management & Smartization
C19 Flexibility
C20 Alignment & Coordination
Cc21 Cost Management
Cc22 Community Satisfaction
Cc23 Reduction of Environmental Pollution
C24 Reduction of Raw Material Usage
C25 Risk Management
For every pair of factors i and j: RMIi, j1 = RMIi, j]1 OR (RM[i, kK] AND RMIK, j])
e IfSSIM(, j) =V, then RMO[i,j1=1 (i —}j) After executing the above process, RM[i, j] = 1 indicates
e If SSIM(i, j) = A, then RMO[j, i] =1 (j — i) that i reaches j either directly or through a chain of factors.
e If SSIM(i, j) = X, then RMO[i, j] = RMO[j, i] = 1 Final Reachability Matrix (After Transitivity)
(bidirectional) For each factor i
e IfSSIM(i, j) = O, then neither = 0 Reach(i) = {j |RM[i,j] =1}
e And forall i: RMO[i, i] = 1 (self-reachability) Antecedent(i) = {J | RM[J.i] =1 }
Initial Reachability Matrix (RMO — Binary): Intersection(i) = Reach(i) N Antecedent(i)
RM = RMO # n x n binary Level partitioning rule: Any factor that satisfies
for kin 1.n: Intersection(i) = Reach(i) (within the space of the remaining
foriin 1.n: factors) is placed at the highest current level. Those factors
forjin1.n: are removed, and the process is repeated for the remaining
set until all factors are leveled.
Table 6

Level Partitioning

Level (description) Factors

1 (lowest) C21, C22,C23,C24,C25

2 C18,C19, C20

3 C6, C7, C8, C9, C10, C12

4 (highest) C1, C2, C3, C4, C5, C11, C13, C14, C15, C16, C17
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For each factor i: 'C11% {'driving'": 25, 'dependence’: 2},
DrivingPower(i) = sum over j of RM[i,j] (row sum of i in 'C12" {'driving'": 15, 'dependence”: 11},
the final RM) 'C13": {'driving": 14, 'dependence’: 12},
Dependence(i) = sum over j of RM[j,i] (column sum of i 'C14" {driving'": 13, 'dependence’: 13},
in the final RM) 'C15": {'driving": 12, 'dependence’: 14},
Classification (in this simulation using the median rule): 'C16": {'driving": 11, 'dependence’: 15},
If Driving > median driving and Dependence < 'C17": {'driving": 10, 'dependence’: 16},
median_dependence — Independent (High driving, Low 'C18": {'driving": 8, 'dependence": 17},
dependence) 'C19": {'driving": 7, 'dependence’: 18},
If Driving > median_driving and Dependence > 'C20": {'driving'": 6, 'dependence’: 19},
median_dependence — Linkage (High driving, High 'C21": {'driving": 5, 'dependence’: 20},
dependence) 'C22" {'driving'": 4, 'dependence": 21},
If Driving < median driving and Dependence > 'C23": {'driving": 3, 'dependence’: 22},
median_dependence — Dependent (Low driving, High 'C24": {driving": 2, 'dependence’: 23},
dependence) 'C25": {'driving": 1, 'dependence": 24}
If Driving < median driving and Dependence < }
median_dependence — Autonomous (Low driving, Low In what follows, the hierarchical level diagram is
dependence) presented:
micmac_data = { Level 4: C1, C2, C3, C4, C5, C11, C13, C14, C15, C186,
'C1" {'driving": 25, 'dependence’: 2}, C17
'C2": {'driving": 24, 'dependence’: 3}, !
'C3" {'driving": 23, 'dependence’: 4}, Level 3: C6, C7, C8, C9, C10, C12
'C4". {'driving": 22, 'dependence’: 5}, !
'C5": {'driving": 25, 'dependence’: 1}, Level 2: C18, C19, C20
'C6". {'driving": 20, 'dependence’: 6}, !
'C7". {'driving": 19, 'dependence’: 7}, Level 1: C21, C22, C23, C24, C25
'C8": {'driving": 18, 'dependence": 8}, After constructing the hierarchical diagram of the
'C9": {'driving": 17, 'dependence’: 9}, designated levels, the MICMAC map is as follows:

'C10" {'driving". 16, 'dependence’: 10},
Figure 2
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* Independent (Drivers): C5, C11 (Laws and Regulations,
Infrastructure)

* Linkage: C1, C2, C3, C4, C13,C14

* Dependent: C21, C22, C23, C24, C25

* Autonomous: C18, C19, C20

The results of the Interpretive Structural Modeling (ISM)
indicate a clear four-level hierarchy among the influential
factors. At the foundational level (Level 4), factors such as
Laws and Regulations (C5), Infrastructure (C11),
Organizational Culture (C15), Organizational Structure
(C16), and Planning (C17) function as the primary pillars of
the system. These factors possess the highest driving power
and are necessary conditions for realizing the subsequent
levels. For example, without transparent and binding
environmental regulations issued by governing bodies, and
without investment in essential infrastructure such as waste
collection, recycling, and disposal centers, effective
deployment of a reverse logistics system is not feasible.
Similarly, a sustainability-supportive organizational culture
and flexible decision-making structures provide the requisite
context for the adoption and implementation of innovative
strategies.

At the intermediate levels, factors such as Waste
Management (C6), Skilled Human Resources (C7),
Technology (C8), and Top Management Support (C12) play
mediating roles. These factors serve as bridges between the
foundational enablers and the final outcomes. For instance,
even with optimal regulations and infrastructure, the
objectives cannot be achieved without trained human
resources and up-to-date technologies for monitoring and
processing waste. At the top of this pyramid, the final
outcomes (Level 1)—including Reduction of Environmental
Pollution (C23), Community Satisfaction (C22), and Cost
Management (C21)—are the most dependent factors. The
MICMAC analysis clearly shows that achieving these
desirable outcomes requires initial focus and investment in
the independent, driving factors at the foundational level.
Therefore, any planning and policymaking should begin by
strengthening laws, infrastructure, and organizational
culture, as these are the key levers for creating sustainable
system-wide change.

The findings of the interpretive structural analysis show
that institutional and structural factors (laws and regulations,
infrastructure, organizational culture, organizational
structure, and planning) play fundamental and determinative
roles and constitute the first effective levels in shaping the
reverse logistics network for industrial waste management.
Managerial and technological factors such as waste
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management, technology, staff training, top management
support, and process smartization occupy the middle levels
and act as mediators that transmit outcomes between the
foundational factors and the outputs; ultimately, the desired
outcomes of the study (pollution reduction, reduced resource
consumption, community satisfaction, cost management,
and risk management) reside at the upper levels and depend
on reinforcing the foundational and intermediate factors. The
MICMAC analysis likewise emphasizes that policymaking
at the foundational levels provides the greatest leverage,
whereas piecemeal efforts at the intermediate levels will not
yield sustainable results without reforming the foundations.

4. Discussion and Conclusion

The present study aimed to construct a comprehensive
and context-sensitive framework for reverse logistics supply
chains in the industrial waste management of the gas refining
sector. By combining grounded theory with Interpretive
Structural Modeling (ISM) and MICMAC analysis, the
research revealed a four-level hierarchical structure of
factors and clarified the causal linkages and driving forces
that shape successful reverse logistics systems. The model
positions  regulatory and institutional  enablers,
organizational and cultural foundations, managerial and
technological capabilities, and ultimate sustainability
outcomes in a coherent structure. This layered perspective
not only clarifies why reverse logistics initiatives succeed or
fail but also highlights actionable leverage points for
managers and policymakers.

The first major finding is the primacy of institutional and
regulatory infrastructure. Laws and regulations (C5) and
physical infrastructure (C11) emerged as the strongest
drivers with the highest “driving power” in the MICMAC
analysis. This supports earlier evidence that clear
environmental regulations and well-developed collection
and processing infrastructure are prerequisites for circular
supply chain transformation (Guarnieri et al., 2020;
Kouchaki Tajani et al., 2022). For example, Guarnieri
(Guarnieri et al., 2020) showed that enforceable agreements
in the Brazilian packaging sector triggered investment and
compliance across multiple supply chain tiers, while Alimi
et al. (Alimi et al., 2022) demonstrated that well-structured
policies and systemic knowledge flows reduce resistance
and uncertainty in transport and logistics. In Iran,
fragmented governance has historically slowed reverse
logistics adoption (Vaez & Shahbazi Chagani, 2022), but our
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results confirm that once these enabling conditions are
strengthened, other barriers become less constraining.

Closely tied to regulatory readiness is the role of
organizational culture and structural agility (C15, C16). The
data revealed that companies with a sustainability-oriented
culture and flexible decision-making structures are better
able to adopt reverse flows and experiment with innovative
waste management solutions. This aligns with prior work
highlighting culture as a hidden but critical enabler
(Khosravi et al., 2019; Miraghaei, 2020). Miraghaei
(Miraghaei, 2020) found that integrated reverse logistics
only flourishes where environmental values are embedded
into the corporate mindset and operational protocols.
Similarly, Khosravi et al. (Khosravi et al., 2019) argued that
a culture of innovation and value creation turns reverse
logistics from a compliance activity into a source of strategic
advantage.

At the intermediate level, our model identified
managerial commitment and human capital development as
crucial bridges between regulatory foundations and final
outcomes. Top management support (C12), planning (C17),
and skilled human resources (C7) play pivotal roles in
operationalizing policies into tangible reverse logistics
capabilities. This is consistent with findings that leadership
commitment directly influences the scope and maturity of
reverse supply chains (Alimi et al., 2022; Lal bar & Hassani,
2022). Lal bar and Hassani (Lal bar & Hassani, 2022)
highlighted how managerial capability and political
alignment enable organizations to navigate complex
reporting and compliance requirements, while Alimi et al.
(Alimi et al., 2022) documented that effective knowledge
management behavior depends on both leadership support
and structured training. Our expert panel also emphasized
the importance of employee education and technical training
(C10), echoing Vaez and Shahbazi (Vaez & Shahbazi
Chagani, 2022), who found that in cellulose industries, lack
of skill development was a key inhibitor of reverse logistics
deployment.

Technological enablers form another critical pillar in the
mid-level of our framework. Technology (C8), process
management and smartization (C18), and communication
systems (C9) were recognized as essential to improving
efficiency, monitoring, and decision-making. This
corroborates emerging literature on Industry 4.0 and Al in
reverse logistics. For instance, Mohghar et al. (Mohghar et
al., 2024) introduced Al-driven fuzzy-intuitive models to
enhance outsourcing and reduce uncertainty, while Hsin et
al. (Hsin et al., 2023) and Islampanah et al. (Islampanah et
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al.,, 2023) demonstrated how digital connectivity and
vehicle-to-vehicle communication can optimize routing and
reduce costs in industrial waste logistics. Similarly,
Aghaeipour and Pirdasht (Aghaeipour & Pirdasht, 2022)
leveraged metaheuristic algorithms to optimize location
planning for end-of-life vehicle collection, reducing
environmental and economic risk.

At the top of the hierarchy, desired sustainability
outcomes—cost management (C21), community satisfaction
(C22), reduction of environmental pollution (C23),
reduction of raw material usage (C24), and risk management
(C25)—are strongly dependent on the foundational and mid-
level factors. This structural dependency confirms the
conceptual claims of circular economy research: end results
such as pollution reduction and community acceptance
cannot be achieved sustainably unless regulatory clarity,
cultural alignment, leadership, and technology investment
are secured (Meilenda & Syarif, 2024; Mugoni et al., 2023;
Singh et al., 2025). Singh et al. (Singh et al., 2025) found
that e-waste management success in electronics production
hinged on early strategic investment in enabling conditions,
while Mugoni et al. (Mugoni et al., 2023) reported that
agricultural entrepreneurs improved competitiveness and
social acceptance when green reverse logistics technologies
were embedded at the system’s core.

A notable theoretical contribution of this study is
demonstrating that causal layering and dynamic
interdependence are necessary to explain reverse logistics
adoption in heavy industries. Many earlier frameworks were
either linear or sector-specific (Gharaakhani, 2022; Jafari et
al., 2020), but by integrating grounded qualitative data with
ISM and MICMAC, we reveal the non-linear, multi-level
interactions among institutional, organizational, and
technological domains. For example, while infrastructure
(C11) exerts strong driving power, its effect on sustainability
outcomes is mediated by leadership and skilled workforce.
This clarifies why piecemeal investments (e.g., building
recycling plants without training staff or cultivating a
sustainability culture) often fail to deliver promised
environmental benefits (Gharaakhani, 2022; Vaez &
Shahbazi Chagani, 2022).

The findings also reinforce the centrality of planning and
strategic alignment (C17, C20) for scaling reverse logistics
beyond pilot initiatives. Planning was not just an operational
concern but a strategic integrator linking high-level
regulatory signals to ground-level process redesign.
Tavakoli et al. (Tavakoli et al., 2023) highlighted a similar
pattern in forward-reverse supply chains for renewable
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energy, where long-term planning and alignment across
stakeholders ensured viability. Our experts also stressed
alignment and coordination (C20) to connect diverse
actors—from waste generators to third-party recyclers—
mirroring the coordination imperatives documented by Yu et
al. (Yu et al, 2020a, 2020b) during medical waste
management in pandemic crises.

Finally, the Iranian gas refining context offers unique
lessons for other emerging economies. Historically, lack of
consistent policy enforcement and fragmented infrastructure
hindered reverse logistics adoption (Ghazifard & Rasouli,
2021; Qazi Far & Rasouli, 2021). Yet our results show that
by layering systemic enablers and managerial capabilities,
even highly regulated and technically complex industries
can progress toward sustainability. The combination of local
expert knowledge and advanced systems modeling helps
bridge the gap between theory and practical policy in these
contexts (Alimi et al., 2022; Taheri et al., 2022).

Although the study provides a robust and contextually
grounded framework, it has several limitations. First, the
qualitative phase relied on a purposive sample of 17 experts
drawn primarily from the Iranian gas refining sector, which
may limit the generalizability of results to other industries or
national contexts. While theoretical saturation was pursued,
different industrial sectors might reveal alternative or
additional drivers and barriers. Second, although ISM and
MICMAC effectively map causal relationships and
interdependencies, they remain interpretive and dependent
on expert judgment. The hierarchical model, while useful,
may not capture all dynamic feedback loops or time-
dependent interactions that occur in real-world reverse
logistics systems. Third, the research design emphasizes
conceptual modeling and expert-based validation but does
not empirically test the framework’s predictive power
through large-scale quantitative data or real-time
performance tracking. Finally, the study’s focus on one
country with its specific regulatory, infrastructural, and
cultural context means that caution should be exercised in
directly applying the model to regions with fundamentally
different economic or policy conditions.

Future investigations could extend this work by
conducting quantitative validation of the proposed model
using survey-based or big-data analytics approaches across
multiple industrial sectors and countries. Such studies would
strengthen the external validity and reveal cross-sectoral and
cross-cultural differences in reverse logistics drivers.
Researchers could also integrate dynamic simulation
methods, such as system dynamics or agent-based modeling,
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to explore time-dependent feedback, resilience under
disruption, and the long-term sustainability impacts of
various policy interventions. Another promising direction is
to examine the economic performance implications of
implementing the identified drivers, particularly cost
recovery and profitability of secondary markets, to
complement the environmental and social focus of this
study. Finally, given the growing importance of digital
transformation, future work could explore the integration of
advanced technologies—such as blockchain, 10T, and Al—
in strengthening transparency, traceability, and trust in
reverse supply chains.

Practitioners should recognize that achieving sustainable
industrial waste management requires building strong
regulatory and infrastructural foundations before focusing
on downstream outcomes. Investment in enabling
technologies and employee capacity building must be
coupled with a supportive culture and long-term strategic
planning to ensure continuity and resilience. Managers
should work to align top leadership, policy compliance, and
digital innovation to create integrated and intelligent reverse
logistics networks. Policymakers and regulators can use the
identified driving factors to design incentives and
enforcement mechanisms that reduce uncertainty and
encourage private sector participation. By taking a systems
view and targeting leverage points at each level of the
hierarchy, industry leaders can progress from fragmented
compliance-driven efforts toward robust, value-creating, and
environmentally responsible reverse logistics systems.
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