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The oil market, due to its extensive economic impact and high price volatility,
has always posed significant challenges for risk prediction and management. In
this study, advanced artificial intelligence models, particularly machine learning,
were employed to achieve more accurate predictions of oil market risk and their
performance was compared with traditional models such as GARCH. The
research findings indicated that machine learning models—especially the
Random Forest algorithm—demonstrate greater accuracy and stability in
predicting oil price fluctuations and assessing associated risks. These models can
simulate nonlinear complexities and capture the effects of various economic and
financial factors, such as stock market turbulence, unemployment indices, and
interest rates, on oil market risk. Moreover, the results revealed that negative
shocks exert a stronger influence on oil market volatility, and artificial
intelligence models can effectively predict these impacts. This study particularly
confirms the importance of using artificial intelligence models to forecast both
short-term and long-term oil market risks and provides economic decision-
makers with innovative tools to manage market risk effectively.

Keywords: risk prediction, oil market, artificial intelligence, machine learning,
Random Forest, GARCH, volatility, Value at Risk (VaR), oil market fluctuations.

1. Introduction

crucial for financial stability and strategic decision-making
(Abdulrahman, 2011; Alles, 1995). Traditional frameworks

he volatility of crude oil prices and the resulting

exposure to market risk have long been central issues
in financial economics and risk management. Oil remains
one of the most strategically important commodities in the
global economy, influencing industrial production, trade
balances, and geopolitical stability (Su et al., 2021; Wong et
al., 2025). Its price swings create uncertainty not only for
producers and consumers but also for policymakers and
investors, making accurate risk measurement and prediction

for risk quantification—such as variance, covariance, and
Value at Risk (VaR)—have provided the foundation for
asset pricing and portfolio management (Mitra & Ji, 2010;
Rachev et al., 2011), but the increasing complexity and
nonlinearity of oil price dynamics call for more adaptive and
intelligent models (Sugianto et al., 2024; Tatiparti et al.,
2023).

Oil price fluctuations stem from a combination of supply-
demand  imbalances, = macroeconomic  uncertainty,
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speculative trading, and exogenous shocks such as
geopolitical conflicts and pandemics (Qian et al., 2022; Su
etal., 2021; Zhao et al., 2024). Political tensions, sanctions,
and wars—such as the Russia—Ukraine conflict—have been
shown to amplify oil market volatility by disrupting supply
chains and investor sentiment (Jahanshahi et al., 2022; Zhao
et al., 2024). Additionally, economic indicators such as
unemployment claims and interest rates shape market
expectations and influence risk premia in energy markets
(Alshabandar et al., 2023; Tatiparti et al., 2023). These
multifaceted drivers cause oil price dynamics to deviate from
normality, producing heavy tails, skewness, and regime
shifts (Li et al., 2022; Qian et al., 2022). Such conditions
challenge the efficiency of classical linear models and
GARCH-type volatility estimators (Mehrara & Hamldar,
2014; Silvapulle & Moosa, 1999).

Early studies on oil price prediction relied heavily on
time-series econometrics and cointegration analysis to
explore the link between spot and futures markets (Nicolau,
2012; Silvapulle & Moosa, 1999; Wong et al., 2025). While
these approaches contributed to understanding market
efficiency (Lean et al., 2010; Mehrara & Hamldar, 2014),
their assumptions about stationarity, homoscedasticity, and
linearity limit their predictive power in volatile and
nonstationary markets (Kaznacheev et al., 2016; Kungwani,
2014). VaR-based risk measures, widely used by financial
institutions for capital allocation and stress testing, also
depend on accurate volatility estimates and distributional
assumptions (Mitra & Ji, 2010; Rachev et al., 2011). When
oil returns exhibit fat tails or asymmetry, standard normal-
based VaR can underestimate tail risk, exposing decision-
makers to unexpected losses (Akash et al., 2024; Weirich,
2020).

In response, artificial intelligence (Al) and machine
learning (ML) methods have emerged as robust alternatives
for modeling nonlinear dependencies and complex risk
structures (An et al., 2019; Aung et al., 2020; Dimitriadou et
al., 2018). Techniques such as Random Forest, support
vector regression (SVR), neural networks, and hybrid deep
learning architectures have been successfully applied to
predict oil price volatility and optimize risk assessment
frameworks (Akash et al., 2024; Fallah et al., 2024;
Mohamed & Messaadia, 2023). Al-driven models excel at
capturing hidden interactions among macroeconomic
indicators, market microstructure variables, and textual or
sentiment-based signals (Wang et al., 2020; Zhao et al.,
2019; Zhao et al., 2020). They are particularly valuable when
market conditions shift abruptly due to geopolitical or
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macroeconomic shocks (Guo et al., 2022; Jahanshahi et al.,
2022).

Machine learning models also provide flexibility in
integrating multiple heterogeneous data sources, including
futures and spot price dynamics (An et al., 2019; Wong et
al., 2025), global financial indicators (Tatiparti et al., 2023;
Zupok, 2022), and sustainability-linked risk metrics
(Gtadysz & Kuchta, 2022). By doing so, they surpass
traditional econometric methods in  out-of-sample
forecasting and tail-risk sensitivity (Dimitriadou et al., 2018;
Nwulu, 2017). In the oil sector, hybrid Al systems—
combining neural networks with statistical volatility
models—nhave shown improved accuracy in forecasting both
short- and long-term risk horizons (Amin-Naseri &
Gharacheh, 2007; Kaznacheev et al., 2016).

However, the deployment of Al for oil market risk
prediction must address several conceptual and
methodological considerations. Risk as a managerial
construct encompasses both measurable uncertainty and
subjective perception (Abdulrahman, 2011; Kungwani,
2014). Misaligned model assumptions or  poor
interpretability can undermine decision usefulness and
regulatory compliance (Sugianto et al., 2024; Wen et al.,
2024). For example, black-box ML models may provide
excellent predictive accuracy but fail to meet the
transparency requirements of financial governance
frameworks (Nwulu, 2017; Kocosa et al., 2021). Moreover,
the design of robust Al-based VaR systems requires careful
selection of probability distributions to capture non-normal
oil returns (Rachev et al., 2011; Zhao et al., 2019). Research
suggests that skewed Student’s t and Johnson SU
distributions can better accommodate heavy tails and
asymmetries than conventional Gaussian assumptions (Li et
al., 2022; Qian et al., 2022).

Another critical research stream concerns the integration
of geopolitical risk measures into oil risk prediction models
(Su et al., 2021; Zhao et al., 2024). Political shocks—
including sanctions, armed conflict, and global supply
disruptions—can cause sudden volatility spikes that are
difficult to anticipate with purely historical models (Guo et
al., 2022; Qian et al., 2022). Geopolitical indices and event-
based features help Al models adapt to nonstationary
environments (Wen et al.,, 2024; Zhao et al.,, 2024).
Similarly, macro-financial indicators such as unemployment
claims, interest rate spreads, and equity market volatility
(e.g., VIX, GSPC, DJI) act as systemic risk transmitters into
commodity markets (Alshabandar et al., 2023; Guan et al.,
2021; Tatiparti et al., 2023). Combining these heterogeneous
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risk drivers with machine learning can improve early
warning systems for oil price shocks (Jumbe, 2022; Qin et
al., 2023).

Beyond predictive accuracy, sustainable and resilient risk
management frameworks are increasingly emphasized in the
energy and finance sectors (Gtadysz & Kuchta, 2022;
Sugianto et al., 2024). As the global economy transitions
toward renewable energy, the dual exposure to fossil fuel
price risk and green investment volatility complicates
strategic planning (Wen et al., 2024; Zhao et al., 2024).
Managers must integrate Al-enhanced forecasting with
adaptive hedging, capital allocation, and sustainability
objectives (Sugianto et al., 2024; Tatiparti et al., 2023). This
is especially critical for oil-dependent economies, where
revenue stability and macroeconomic policy are closely tied
to crude price movements (Guan et al., 2021; Mehrara &
Hamldar, 2014).

The historical evolution of oil price forecasting models—
from early mean-variance approaches (Alles, 1995; Lean et
al., 2010) to advanced hybrid Al solutions (An et al., 2019;
Fallah et al., 2024)—illustrates the growing recognition that
risk is multidimensional. It involves not only volatility but
also tail exposure, correlation dynamics, and systemic
contagion (Mitra & Ji, 2010; Weirich, 2020). Yet, despite
these advances, gaps remain in designing models that are
both highly predictive and interpretable, capable of adapting
to evolving geopolitical and economic contexts while
satisfying the practical needs of risk managers (Mohamed &
Messaadia, 2023; Sugianto et al., 2024).

Building on this background, the present study addresses
these gaps by integrating advanced machine learning
techniques with robust volatility modeling and tailored
distributional assumptions. Specifically, it leverages
Random Forest—a flexible ensemble learning algorithm
with strong generalization capacity—and compares its risk
forecasting performance against established
heteroskedasticity models such as GARCH and TGARCH
(An et al., 2019; Aung et al., 2020). By incorporating

Table 1

Research Variable Definitions
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macroeconomic and geopolitical indicators alongside
statistical volatility features, the research aims to improve
the precision of Value at Risk estimates in the oil market
(Guo et al., 2022; Zhao et al., 2020). Through rigorous
backtesting and comparison with parametric methods, the
study seeks to offer a more reliable and practical tool for
energy market risk management.

This study aims to develop and validate an advanced
machine learning-based approach for predicting crude oil
price volatility and estimating Value at Risk by integrating
macroeconomic, financial, and geopolitical risk drivers, and
to compare its performance  with traditional
heteroskedasticity models to provide a robust framework for
market risk management.

2. Methods and Materials

To prepare the required variables for testing the
hypotheses, Microsoft Excel was used. First, the collected
data were entered into worksheets created in this software
environment, and then the necessary calculations were
performed to obtain the variables for this study. After
computing all variables required for the research models,
these variables were consolidated into unified worksheets to
be transferred to the software used for the final analysis. It is
important to note that the statistical analyses in this study
were conducted using R version 4.3.1.

The statistical population and the scope of the collected
data in this study consist of the daily time series of several
key macroeconomic and financial indicators from May 5,
2014, to April 26, 2024. The return and volatility of oil prices
were considered as the target variables, and in this study, a
novel approach was applied to calculate the Value at Risk
(VaR) of these price fluctuations. Table 1 presents the
research variables along with their corresponding symbols
(for simplicity in implementing the project within the
software environment, the variables were symbolically
coded).

Variable Name Symbol  Type Description

Oil Price Volatility Oil Dependent
VIX Volatility Index VIX

markets
S&P 500 Index GSPC
Volatility
Dow Jones Industrial DJI

Average Volatility

West Texas Intermediate (WTI) crude oil futures
Independent  One of the most important measures for assessing the level of fear and volatility in financial

Independent  The S&P 500 index includes 500 large and reputable U.S. companies

Independent  The DJIA includes 30 major and reputable U.S. companies operating across various industries
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Changes in Initial ICSA Independent  The Initial Claims for Unemployment Insurance (ICSA), published by the Federal Reserve Bank of
Unemployment Claims St. Louis, represent the number of individuals filing for unemployment insurance for the first time.
These data, originally weekly and seasonal, were converted to daily frequency in this study.
Changes in Interest DGS10  Independent  Yield on 10-year fixed-maturity U.S. Treasury bonds

Rate

Several points regarding the selected research variables
are noteworthy. The aim of this study is to provide a
relatively comprehensive measurement of oil market risk,
considering multiple dimensions. Therefore, based on the
review of previous studies and to account for the impact of
financial markets, three key and influential U.S. financial
market indices were selected: the S&P 500 index, the Dow
Jones Industrial Average, and the VIX Fear and Greed
Index. The conditional variance of the S&P 500 and Dow
Jones indices was used to represent volatility in the model
because the goal was to incorporate the risk effect of these
variables into modeling oil market risk. Since the VIX Fear
and Greed Index inherently represents risk, it was directly
included as an input variable in the model. The same
principle was applied to other macroeconomic and
econometric variables; for example, the conditional variance
of initial unemployment claims and the U.S. Federal Reserve
interest rate was used to capture economic risk dimensions.

3. Findings and Results

As shown in Table 2, the number of observations within
the research scope reached 2,495 days after historical
alignment. For the variables “Oil,” “GSPC,” and “DJL”
logarithmic returns were calculated, and the descriptive
statistics provided correspond to these logarithmic returns
(price differentials). Based on this information, the daily
return range for West Texas Intermediate (WT]I) oil prices
fluctuates between -33% and +32%. According to
concentration measures such as mean and median, the
average daily return for oil is approximately 0 to 1%, and its
standard deviation is about 3%, indicating the risk of
deviation from expected returns. The skewness values range

Table 2

Summary of Descriptive Statistics of Research Variables

between -0.71 and -2, showing relative symmetry in the data
distribution, while the kurtosis value of 26.54 indicates that
the distribution’s peak is sharper compared to a normal
distribution.

Regarding the “VIX” variable (volatility index), the range
of this index fluctuated between 9.14 and 82.69. A VIX
value between 10 and 20 indicates stable conditions and
market confidence, while values above 20 show increased
uncertainty and fear. In crisis situations, such as the 2008
financial crisis or the COVID-19 pandemic, the index can
exceed 40 or even reach above 80. According to the
descriptive statistics in the table, the average value of this
index ranged from 16 to 18, indicating a relatively stable
level of fear and uncertainty in the market.

For the “ICSA” (changes in
unemployment claims), the number of individuals filing for
unemployment benefits during the study period varied
between 187,000 and 6,137,000. These data are published
weekly, but in this research, they were converted into daily
frequency using interpolation techniques. On average, the
daily number of unemployment claims ranged between
245,000 and 374,988, indicating significant fluctuations in
the number of newly unemployed individuals.

Finally, regarding the “DGS10” variable (changes in
interest rates), the U.S. Treasury bond vyields fluctuated
between 0.5% and 5%. This reflects moderate volatility in
bond yields and changes over time. These descriptive
statistics and analyses collectively provide a picture of oil
market volatility and associated macroeconomic and
financial risks, forming a foundation for testing the research
hypotheses. Figures (1) through (6) illustrate the time series
graphs of these variables.

variable initial

Variables Observations Minimum Maximum Mean Median Standard Deviation Skewness Kurtosis
Qil 2,495 -0.335 0.319 -0.00007 0.0012 0.030 -0.71 26.54
VIX 2,495 9.14 82.69 18.118 16.09 7.335 2.60 12.79
GSPC 2,495 -0.127 0.089 0.0004 0.0006 0.011 -0.81 15.98
DJI 2,495 -0.138 0.107 0.00034 0.0007 0.011 -0.96 22.81
ICSA 2,495 187,000 6,137,000 374,988.38 245,000 545,226.16 6.95 57.69
DGS10 2,495 0.52 4.98 2.361 2.29 0.945 0.42 -0.13
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These characteristics emphasize the necessity of using and forecasting oil market risk and make detailed analysis of
advanced approaches such as machine learning in modeling this data essential for hypothesis testing.

Figure 1

Logarithmic return of WTI oil

Oil

Value

period step

Figure 2

VIX Fear and Greed Index

VIX

Value

2020
period step

Figure 3

Logarithmic return of the S&P 500 index

GSPC

Value

period step
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Figure 4

Logarithmic return of the Dow Jones Industrial Average

DJI

Value

period step

Figure 5
Conceptual Model
ICSA
R o Y R |
—— 2 622
Figure 6
Fixed-income bond yields (interest rates)
DGS10

Value

2020
period step

To model oil market risk, it is first necessary to transform
these variables. the study variables into risk-based features using feature
engineering. For instance, the target variable in this study is

Figures (1) through (6) present the time series plots of
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the volatility of oil market returns, which is inherently
related to market risk. For this purpose, conditional variance
(heteroskedasticity) models were used to extract volatility.
This process was also applied to the “GSPC,” “DJI,” and

Table 3

Preliminary Test Results for Basic Assumptions Prior to Modeling

Journal of Resource Management and Decision Engineering 5:1 (2026) 1-18

“DGS10” variables. Since the “VIX” index is itself a
volatility and risk measure, no transformation was needed.
Based on these explanations, the basic assumptions were
tested only for the “Oil,” “GSPC,” “DJI,” and “DGS10”
variables, and the results are presented in Table 3.

Row Variables Jarque—Bera Test

Augmented Dickey—Fuller Test

ARCH Effects Test

Statistic p-value Statistic
1 Oil 73,583.31 <0.01 -12.99
2 GSPC 26,872.29 <0.01 -13.41
3 DJI 54,551.29 <0.01 -13.45
4 DGS10 76.01 <0.01 -0.89

p-value Statistic p-value
<0.01 848.57 <0.01
<0.01 974.81 <0.01
<0.01 1,011.43 <0.01
0.95 2,473.90 <0.01

As observed in Table 3, the p-values for the Jarque—Bera
normality test and the ARCH heteroskedasticity effects test
are all below 0.05, indicating non-normal data distribution
and the presence of heteroskedasticity. Thus, the variables
exhibit variance instability and non-normal distributions.
However, regarding stationarity testing, except for the
interest rate variable, the other variables are stationary at the
95% confidence level.

Since one of the fundamental assumptions of GARCH
modeling is variable stationarity, the non-stationary interest
rate variable will be directly included in the machine
learning model without GARCH transformation. Therefore,
GARCH modeling was performed for the “Oil,” “GSPC,”

and “DJI” variables, and their extracted conditional

Table 4

variances (volatilities) were then used as inputs in the
machine learning model.

In this section, the input features and the target variable
for the machine learning model were prepared. According to
the results of the previous section, heteroskedasticity
modeling was performed for the three variables “Oil,”
“GSPC,” and “DJI,” and their respective conditional
variances were extracted to represent the volatility of these
indices. For this purpose, an appropriate GARCH family
model with a suitable distribution was first selected and then
applied to the variables. Tables (4) through (6) report the
results obtained from comparing various heteroskedasticity
model families across different statistical distributions for
each variable.

Comparison of Different Heteroskedasticity Model Families by Statistical Distribution for Oil

Model Distribution LogLikelihood AIC BIC
GARCH norm 5844.39 -4.68007 -4.66607
GARCH snorm 5873.753 -4.70281 -4.68647
GARCH std 5924.533 -4.74351 -4.72718
GARCH sstd 5943.635 -4.75802 -4.73936
GARCH ged 5908.511 -4.73067 -4.71434
GARCH sged 5932.234 -4.74888 -4.73022
GARCH jsu 5943.175 -4.75766 -4.73899
EGARCH norm 5870.867 -4.70049 -4.68416
EGARCH snorm 5900.725 -4.72363 -4.70496
EGARCH std 5939.839 -4.75498 -4.73631
EGARCH sstd 5960.312 -4.77059 -4.74959
EGARCH ged 5924.085 -4.74235 -4.72368
EGARCH sged 5949.78 -4.76215 -4.74115
EGARCH jsu 5959.89 -4.77025 -4.74925
GJRGARCH norm 5866.766 -4.69721 -4.68087
GJRGARCH snorm 5893.296 -4.71767 -4.699
GJRGARCH std 5933.71 -4.75007 -4.7314
GJRGARCH sstd 5952.706 -4.76449 -4.74349
GJRGARCH ged 5919.675 -4.73882 -4.72015
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GJRGARCH sged 5942.806 -4.75656 -4.73556
GJRGARCH jsu 5952.326 -4.76419 -4.74319
TGARCH norm 5878.99 -4.70701 -4.69067
TGARCH snorm 5909.944 -4.73102 -4.71235
TGARCH std 5946.504 -4.76032 -4.74166
TGARCH sstd 5967.626 -4.77645 -4.75545
TGARCH ged 5930.216 -4.74727 -4.7286

TGARCH sged 5956.469 -4.76751 -4.74651
TGARCH jsu 5967.148 -4.77607 -4.75507

Table 5

Comparison of Different Heteroskedasticity Model Families by Statistical Distribution for GSPC

Model Distribution LogLikelihood AIC BIC
GARCH norm 8322.205 -6.6663 -6.6523
GARCH snorm 8368.72 -6.70278 -6.68645
GARCH std 8400.02 -6.72787 -6.71154
GARCH sstd 8415.576 -6.73954 -6.72087
GARCH ged 8394.312 -6.7233 -6.70696
GARCH sged 8408.165 -6.7336 -6.71493
GARCH jsu 8422.596 -6.74517 -6.7265
EGARCH norm 8362.137 -6.6975 -6.68117
EGARCH snorm 8407.165 -6.7328 -6.71413
EGARCH std 8441.951 -6.76068 -6.74201
EGARCH sstd 8458.55 -6.77319 -6.75218
EGARCH ged 8430.392 -6.75142 -6.73275
EGARCH sged 8446.512 -6.76354 -6.74254
EGARCH jsu 8464.106 -6.77764 -6.75664
GJRGARCH norm 8354.302 -6.69122 -6.67489
GJRGARCH snorm 8396.526 -6.72427 -6.7056
GJRGARCH std 8434.974 -6.75509 -6.73642
GJRGARCH sstd 8449.48 -6.76592 -6.74491
GJRGARCH ged 8423.917 -6.74623 -6.72756
GJRGARCH sged 8438.075 -6.75677 -6.73577
GJRGARCH jsu 8454.662 -6.77007 -6.74907
TGARCH norm 8375.22 -6.70799 -6.69166
TGARCH snorm 8422.082 -6.74475 -6.72609
TGARCH std 8453.477 -6.76992 -6.75125
TGARCH sstd 8471.84 -6.78384 -6.76284
TGARCH ged 8440.388 -6.75943 -6.74076
TGARCH sged 8458.25 -6.77295 -6.75194
TGARCH jsu 8477.414 -6.78831 -6.76731
Table 6

Comparison of Different Heteroskedasticity Model Families by Statistical Distribution for DJI

Model Distribution LogLikelihood AIC BIC

GARCH norm 8415.63 -6.74119 -6.72719
GARCH snorm 8447.777 -6.76615 -6.74982
GARCH std 8484.315 -6.79544 -6.77911
GARCH sstd 8492.65 -6.80132 -6.78265
GARCH ged 8485.07 -6.79605 -6.77971
GARCH sged 8493.872 -6.8023 -6.78363
GARCH jsu 8501.764 -6.80863 -6.78996
EGARCH norm 8451.4 -6.76906 -6.75272
EGARCH snorm 8475.922 -6.78791 -6.76925
EGARCH std 8517.819 -6.8215 -6.80283
EGARCH sstd 8528.71 -6.82943 -6.80843
EGARCH ged 8514.025 -6.81846 -6.79979
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EGARCH sged 8525.288 -6.82668 -6.80568
EGARCH jsu 8531.644 -6.83178 -6.81078
GJRGARCH norm 8448.795 -6.76697 -6.75064
GJRGARCH snorm 8474.242 -6.78657 -6.7679

GJRGARCH std 8516.568 -6.8205 -6.80183
GJRGARCH sstd 8526.981 -6.82804 -6.80704
GJRGARCH ged 8512.674 -6.81737 -6.79871
GJRGARCH sged 8524.009 -6.82566 -6.80466
GJRGARCH jsu 8529.906 -6.83039 -6.80938
TGARCH norm 8460.745 -6.77655 -6.76021
TGARCH snorm 8487.239 -6.79698 -6.77832
TGARCH std 8525.614 -6.82775 -6.80908
TGARCH sstd 8538.488 -6.83726 -6.81626
TGARCH ged 8521.164 -6.82418 -6.80551
TGARCH sged 8534.148 -6.83379 -6.81278
TGARCH jsu 8541.506 -6.83968 -6.81868

For the purpose of selecting a heteroskedasticity model
with an appropriate distribution, the log-likelihood, AIC,
and BIC information criteria were used. According to the
results in the above table, the Threshold GARCH model
(TGARCH) with a skewed Student’s t distribution (SSTD)
was selected as the optimal model for Qil, and the Threshold
GARCH model (TGARCH) with the Johnson SU (JSU)
distribution was selected as the optimal model for GSPC and
DJI. In standard GARCH models, it is assumed that positive
and negative shocks have identical effects on volatility
(conditional variance). However, in many financial datasets,
negative shocks (e.g., price declines) exert a stronger impact
on volatility. TGARCH incorporates these asymmetric
effects through a threshold indicator, explicitly accounting
for the differential impact of positive and negative shocks on
volatility. Because this model allows negative and positive
shocks to have different effects on the variance, it can be far
more effective for computing Value at Risk (VaR), in which
asymmetric volatility is important. The Johnson SU
distribution is a flexible family used to model non-normal
data. Financial asset returns often have heavier tails than the
normal distribution, a property that the Johnson SU
distribution captures well. The Johnson SU distribution can

Table 7

also account for skewness more effectively than symmetric
distributions (e.g., normal). In general, due to its multiple
parameters, the Johnson SU distribution can adapt to various
shapes (heavy tails, skewness, or near-normal).
Accordingly, in what follows, volatility is modeled using the
Threshold GARCH model with the skewed Student’s t and
Johnson SU distributions. The modeling results for these
three variables are reported in Tables (7) through (9) and
depicted in Figures (7) through (9).

It should be noted that 20% of the full sample, equal to
504 observations, was treated as out-of-sample (test set), and
forecasts were generated using a rolling window. VaR is
computed from the volatility forecasts of the Oil variable.
The volatility forecasts of GSPC and DJI are also used as
inputs to the machine learning model for forecasting oil
volatility and, consequently, computing VaR. In other
words, this study computes oil volatility in two ways. In the
first approach, volatility is modeled using a univariate
GARCH specification only; in the second approach,
volatility is modeled using additional variables. Under both
approaches, VaR is computed and then backtested and
compared.

Estimation Results of the Threshold Heteroskedasticity GARCH Model with a Skewed Student’s t Distribution for Oil

Parameters Estimated Coefficient Standard Error t-Statistic p-Value
mu -0.0002 0.00036 -0.56 0.00
omega 0.00057 0.00013 421 0.00
alphal 0.10225 0.01353 7.56 0.00
betal 0.90113 0.0129 69.85 0.00
etall 0.51472 0.09946 5.18 0.00
skew 0.84792 0.0261 32.49 0.00
shape 6.305 0.85432 7.38 0.00
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Estimation Results of the Threshold Heteroskedasticity GARCH Model with a Johnson SU Distribution for GSPC

Parameters Estimated Coefficient Standard Error t-Statistic p-Value
mu 0.00017 0.00014 121 0.23
omega 0.00042 0.00006 6.68 0.00
alphal 0.14482 0.01762 8.22 0.00
betal 0.84893 0.01653 51.37 0.00
etall 0.93112 0.10482 8.88 0.00
skew -0.82507 0.1706 -4.84 0.00
shape 2.00011 0.17401 11.49 0.00

Table 9

Estimation Results of the Threshold Heteroskedasticity GARCH Model with a Johnson SU Distribution for DJI
Parameters Estimated Coefficient Standard Error t-Statistic p-Value
mu 0.00025 0.00014 1.75 0.08
omega 0.00037 0.00006 6.15 0.00
alphal 0.14295 0.01851 7.72 0.00
betal 0.85261 0.01707 49.95 0.00
etall 0.79651 0.10419 7.64 0.00
skew -0.52982 0.1149 -4.61 0.00
shape 1.83309 0.14618 12.54 0.00

Given that the p-values for alphal and betal are less than
0.05 in all three tables, the parameters capturing
heteroskedasticity effects are statistically significant for all three
variables. Moreover, in all three tables the asymmetry
(threshold) parameter is estimated to be positive and its p-value

Figure 7

is also less than 0.05; thus, negative shocks have a significantly
larger effect than positive shocks for all three variables. This
indicates that in these three markets, investors react more
strongly to negative news.

Distribution plots of residuals from the threshold conditional heteroskedasticity model for Oil

Empirical Density of Standardized Residuals

06
|

2 normal Density
sstd (0.1) Fitted Density

Probaility
03 04 05
\ |

02
|

01

Zseries

10

Sample Quantiles

-2

-6

sstd - QQ Plot

Theoretical Quantiles


https://journals.kmanpub.com/index.php/jppr/index

Majdi et al.

MAN

PUBLISHING INSTITUTE

Figure 8

Journal of Resource Management and Decision Engineering 5:1 (2026) 1-18

Distribution plots of residuals from the threshold conditional heteroskedasticity model for GSPC
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Distribution plots of residuals from the threshold conditional heteroskedasticity model for DJI
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Looking at the estimated skewness coefficient (skew), the
estimated skewness for Oil is positive and statistically
significant (p < 0.05), implying a heavier right tail and a
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greater likelihood of positive returns. For GSPC and DJI, the
situation is entirely different: the estimated skewness is
negative and significant, indicating a heavier left tail relative
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to the right tail and, in other words, a higher likelihood of
negative returns. The (shape) parameter pertains to the form
and kurtosis (tail thickness) of the distribution; values
greater than one that are statistically significant indicate the
intensity of tail events. The significance of this parameter
implicitly suggests that rare events in the market are quite
plausible. Comparing the shape parameters across the three

Table 10
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tables shows that the intensity of rare events and the impact
of their shocks is greater in the oil market than in GSPC and
DJI.

To examine the independent effect of each variable on oil
volatility, a multiple linear regression model was used. The
results are presented in Table (10).

Results of the Linear Regression Model for Testing the Significance of Independent Variables on Oil Volatility

Parameters Estimated Coefficient Standard Error t-statistic p-value
(Intercept) 0.01352 0.000646 20.93 0.00
GSPC Volatility 0.588344 0.16119 3.65 0.00
DJI Volatility 0.217305 0.152929 1.42 0.16
DGS10 -0.00193 0.001102 -1.75 0.08
ICSA 0.078681 0.002781 28.30 0.00
VIX 0.009124 0.004281 2.13 0.03

Adjusted coefficient of determination (R-squared): 0.5727; Durbin—Watson statistic: 0.14327

Before interpreting the regression results, the quality of
the model must be evaluated. Considering the adjusted
coefficient of determination (R-squared) of approximately
0.57, the fitted linear model can be regarded as moderately
adequate; in other words, about 57% of the variation in the
dependent variable is explained by the explanatory variables.
Another point of concern is the Durbin—Watson statistic,
which was approximately 0.14, reinforcing the spurious
regression hypothesis proposed by Granger and Newbold

Figure 10

Q-Q Norm Plot of Regression Model Residuals

(1974). Granger and Newbold argued that in spurious
regressions, we often observe high R-squared values and
autocorrelated residuals, indicated by low Durbin—Watson
values. Based on this, Granger and Newbold suggest that
when R-squared > Durbin—Watson, the functional form of
the regression should be estimated using first-order
differencing.

Examining the statistical distribution of residuals (Figure
10) clearly rejects the normality assumption.

Normal Q-Q Plot
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The Q-Q norm plot compares the quantiles of residuals
with the quantiles of a normal distribution. If the points align
along a straight line, it indicates normality; however, as
shown in the figure above, the normality assumption is
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visually rejected. Therefore, given the model adequacy
evaluation results, the significance of the estimated
coefficients cannot be fully trusted.
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Nevertheless, the results suggest that GSPC volatility,
changes in unemployment claims (ICSA), and the VIX index
have a positive and significant effect on oil market volatility.
The rationale for the significance of these variables is as
follows:

e GSPC \Volatility reflects financial market
expectations, economic conditions, and the level of
activity of industrial and energy-related companies,
which can directly affect oil demand and price
volatility.

e ICSA (Initial Unemployment Claims) increases
may signal declining economic activity and thus
decreasing energy (oil) demand. However, its effect

may be delayed and indirect because
unemployment changes typically show lagged
impacts.

e VIX represents market expectations of future
GSPC volatility over the next 30 days. It is
calculated from option prices on the GSPC and is
recognized as a measure of risk and uncertainty in
financial markets. A rising VIX indicates that

Table 11
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investors feel more uncertainty and risk, leading
them to shift toward safe-haven assets such as
bonds or risk-free instruments. This capital flight
from risky markets (such as oil) reduces liquidity
and increases volatility in the oil market.
Conversely, when VIX is low, investors feel more
secure, markets become more stable, and oil prices
usually exhibit less volatility and greater stability
because liquidity remains and speculative
behaviors decline. A low VIX also indicates stable
economic growth, supporting steady oil demand
and reduced price volatility.

In summary, the linear regression model provides insights
into possible linear relationships between independent
variables and oil volatility. However, given the rejection of
model adequacy assumptions, its results cannot be fully
relied upon. Therefore, in this study, machine learning
models—more robust to such assumptions—are employed
for volatility modeling. Table (11) summarizes the strengths
and weaknesses of classical linear regression compared with
machine learning models.

Comparison of Advantages and Disadvantages of Linear Regression and Machine Learning Models

Model Advantages Disadvantages Suitable When

Linear Simple, interpretable Requires key assumptions (e.g., normality of ~ When linear relationships between
Regression errors, data independence) variables exist

Machine Flexible, nonlinear modeling, robust to noise, Computationally intensive, difficult model When dealing with complex data

Learning capable of learning complex patterns

interpretation (“black box™)

and nonlinear patterns

As shown in Table (11), machine learning models do not
require fundamental assumptions such as normal residual
distribution or serial independence of errors and can also
uncover nonlinear relationships between variables.
However, their interpretation is highly complex and
challenging due to their “black box” nature. Therefore, in the
following section, oil volatility modeling is carried out using
one of the well-known machine learning models.

In this section, after preparing the data, four common
machine learning models were trained. As previously
mentioned, 80% of observations were used as the training

Table 12

dataset and 20% as the test dataset. Table (12) presents the
prediction accuracy of these four models based on the widely
used loss functions: Root Mean Square Error (RMSE) and
Mean Absolute Error (MAE), defined as follows:

MAE=(I/N) Y |y i~ ¥ il

RMSE =V(I/N Y. (y_i— ¥ i)}

The MAE metric indicates the average magnitude of
errors, while RMSE reflects the dispersion of prediction
errors around zero. Thus, lower values of both metrics
indicate higher prediction accuracy. Typically, MAE is
smaller than RMSE.

Prediction Accuracy Comparison of Machine Learning Models for Oil Volatility

Model Training RMSE Training MAE Test RMSE Test MAE
Support Vector Regression (SVR) 0.006037 0.00349 0.00909 0.007341
Random Forest 0.002068 0.001381 0.006188 0.005011
Decision Tree 0.007355 0.005629 0.007638 0.006115
Artificial Neural Network (ANN) 0.00454 0.003604 0.009671 0.007382
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As previously noted, MAE shows the average size of
prediction errors (both positive and negative). Based on the
obtained results, the oil market volatility predictions from
the Random Forest model exhibit the lowest average
prediction error compared to the other models. Furthermore,
the RMSE value for Random Forest shows that the
dispersion of its prediction errors is also lower than the other
models, indicating greater stability. Therefore, the Random
Forest model was selected to estimate the conditional
standard deviation for computing Value at Risk (VaR).

After obtaining the conditional standard deviation
estimates for the test dataset through the Random Forest
model predictions, the Value at Risk (VaR) was calculated
using the following formula:

VaR t=06 t*q a

In this formula, VaR_t represents the Value at Risk at
time t. The term o t denotes the conditional standard
deviation obtained from the machine learning model, and

Table 13

Backtesting Results of Estimated Value at Risk for Two Methods
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q_o is the quantile of the appropriate statistical distribution.
Based on the findings of the previous sections, the skewed
Student’s t distribution was selected as the appropriate
distribution for oil price returns.

To better evaluate the VaR results, VaR was also
computed using the heteroskedasticity model for
comparison with the proposed model of this research.
Accordingly, Figures (11) and (12) show the estimated VaR
from the proposed model and the GARCH model,
respectively, alongside the oil price returns. Table (13)
reports the backtesting results to assess the overall adequacy
of the VaR estimates for both methods.

Considering the obtained p-values greater than 0.05, the
null hypothesis of accuracy adequacy for the estimated VaR
values is confirmed at the 95% confidence level; thus, the
results are reliable. Moreover, according to the Lopez
statistic, the VaR estimates from the proposed model
outperform the GARCH-based results.

Methods Test Statistic p-value Lopez Statistic

Proposed Model of This Research Unconditional Coverage (Kupiec) 1.585372 0.21 4080.745
Conditional Coverage (Christoffersen) 1.814173 0.40

Parametric Method Based on Heteroskedasticity Unconditional Coverage (Kupiec) 0.001715 0.97 4033.800

Conditional Coverage (Christoffersen)

0.117722 0.94

Figure 11

VaR estimated by the proposed model at the 5% level
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Figure 12

VaR estimated by the threshold heteroskedasticity model at the 5% level
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4. Discussion and Conclusion

The present study aimed to improve the accuracy of oil
market risk prediction by integrating machine learning-
based volatility modeling with robust distributional
assumptions. The results indicated that the Random Forest
model significantly outperformed traditional
heteroskedasticity frameworks such as GARCH and
TGARCH in forecasting oil price volatility and,
consequently, in computing Value at Risk (VaR). The
superiority of Random Forest was evidenced by lower Root
Mean Square Error (RMSE) and Mean Absolute Error
(MAE) values, both in the training and testing sets. This
finding confirms that nonparametric ensemble approaches
are highly effective when the underlying data are nonlinear,
nonstationary, and influenced by multiple interacting risk
drivers (An et al., 2019; Dimitriadou et al., 2018).

The enhanced predictive power of the Random Forest
model can be attributed to its ability to capture complex,
nonlinear interactions between macroeconomic indicators
and oil price returns. Traditional GARCH-type models
assume a single conditional variance process and require
strong parametric distributional assumptions (Alles, 1995;
Silvapulle & Moosa, 1999). However, oil market returns are
known to exhibit heavy tails, volatility clustering, and
asymmetric responses to shocks (Li et al., 2022; Qian et al.,
2022). By comparison, Random Forest avoids the
constraints of predefined functional forms and uses recursive
partitioning to approximate nonlinear and high-order effects
(Aung et al., 2020; Kaznacheev et al., 2016). This
adaptability makes it particularly suitable in the presence of
abrupt structural breaks and exogenous shocks, such as

15
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= Return

w— \aR 5%

' '
2022 2024

geopolitical disruptions (Jahanshahi et al., 2022; Su et al.,
2021).

One key insight from the analysis was the asymmetric
effect of positive and negative shocks on oil volatility.
TGARCH modeling confirmed that negative shocks exert a
stronger influence on conditional variance than positive
shocks, aligning with the
documented in financial and commodity markets (Mehrara
& Hamldar, 2014; Wong et al., 2025). This asymmetry is
consistent with investor behavior theories suggesting
heightened sensitivity to adverse news, leading to abrupt
price declines and liquidity contractions (Mitra & Ji, 2010;
Weirich, 2020). The decision to model returns using skewed
Student’s t and Johnson SU distributions further addressed
this characteristic by accommodating fat tails and skewness
in the data (Li et al., 2022; Rachev et al., 2011). Prior
research has highlighted that using Gaussian assumptions
underestimates extreme downside risk, producing unreliable
VaR estimates (Wang et al., 2020; Zhao et al., 2019).

Another major contribution of this study is the integration
of macroeconomic and financial indicators, including the
S&P 500 (GSPC), Dow Jones Industrial Average (DJI), VIX
volatility index, unemployment claims (ICSA), and U.S.
Treasury yields (DGS10), into the predictive framework.
The regression analysis suggested that volatility in GSPC
and the level of VIX significantly contribute to oil price risk,
while interest rate changes had weaker and statistically
insignificant effects. This supports findings by (Tatiparti et
al., 2023) and (Alshabandar et al., 2023) showing that global
equity market sentiment and systemic fear indicators can
transmit risk into the oil market. The predictive strength of

“leverage effect” widely
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VIX in particular confirms its value as a forward-looking
measure of market anxiety and tail risk (Guan et al., 2021;
Zhao et al., 2024).

Interestingly, the unemployment claims (ICSA) variable
showed a significant relationship with oil volatility, but the
effect was indirect and lagged. This is consistent with
(Jumbe, 2022) and (Mohamed & Messaadia, 2023), who
observed that labor market shocks influence energy demand
expectations with some delay. During economic slowdowns,
investors anticipate reduced industrial activity and energy
consumption, increasing uncertainty and speculative
positioning in oil derivatives (Akash et al., 2024; Tatiparti et
al., 2023). However, the relatively weak role of interest rates
(DGS10) diverges from some earlier studies (Ghaffari, 2013;
Kungwani, 2014), suggesting that in the current oil market,
other macro-financial channels dominate risk transmission
compared to conventional monetary policy indicators.

Backtesting results further validated the proposed
model’s VaR estimates. The unconditional and conditional
coverage tests (Kupiec and Christoffersen) confirmed that
the Random Forest-based VaR predictions were statistically
adequate at the 95% confidence level. Additionally, the
Lopez loss function indicated that the proposed model
outperformed TGARCH-based VaR in terms of predictive
accuracy. This finding strengthens the argument made by
(Dimitriadou et al., 2018) and (Nwulu, 2017) that machine
learning-driven risk frameworks can surpass parametric
volatility models in both tail sensitivity and robustness under
nonstationary conditions.

The observed performance advantage also aligns with
advances in hybrid modeling that combine Al flexibility
with econometric structure (Amin-Naseri & Gharacheh,
2007; Fallah et al., 2024). While this study primarily used
Random Forest, the integration of macroeconomic
predictors and flexible distributions creates a semi-hybrid
approach, preserving interpretability in risk attribution while
benefiting from machine learning’s nonlinear adaptability.
Similar approaches have been successful in other energy
markets (Gtadysz & Kuchta, 2022; Kaznacheev et al., 2016).

Furthermore, this research highlights the practical
significance of adapting risk models to extreme market
conditions caused by geopolitical events. The recent Russia—
Ukraine conflict has intensified supply-side shocks and price
uncertainty (Jahanshahi et al., 2022; Su et al., 2021). By
incorporating risk measures sensitive to such exogenous
events, including VIX and market-wide volatility indicators,
the proposed model remains resilient when traditional
models struggle (Guo et al., 2022; Qian et al., 2022). These
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results suggest that Al-driven frameworks could become
indispensable for managing commodity risk in highly
uncertain and politically sensitive global markets.

Additionally, the focus on sustainable and forward-
looking risk management contributes to bridging the gap
between prediction and managerial action. As the global
energy transition introduces new uncertainties—such as
renewable energy adoption and green investment
volatility—the ability to adapt oil risk models to dynamic
macro-financial and geopolitical factors becomes essential
(Sugianto et al., 2024; Zhao et al., 2024). This approach
provides decision-makers with an advanced tool for
proactive risk mitigation, hedging strategy design, and
capital allocation (Gtadysz & Kuchta, 2022; Tatiparti et al.,
2023).

Finally, this study reaffirms that risk in the oil market is
multidimensional and cannot be fully captured by single-
factor volatility models (Alles, 1995; Weirich, 2020). A
robust framework must consider tail events, asymmetries,
systemic linkages, and adaptive learning mechanisms to
remain relevant in fast-changing markets. The integration of
machine learning with heteroskedastic volatility modeling
represents a meaningful step toward building such resilient
frameworks (An et al., 2019; Dimitriadou et al., 2018).

Despite its contributions, this study is subject to several
limitations. First, although Random Forest significantly
improved predictive accuracy, the model’s “black-box”
nature limits interpretability. While variable importance
measures were used, they cannot fully explain the dynamic
interactions between risk drivers and oil volatility. Second,
the dataset was primarily built from macroeconomic and
financial indicators available at a daily frequency;
incorporating higher-frequency data, such as intraday
trading activity or real-time news sentiment, might further
enhance responsiveness but was beyond the scope of this
research. Third, the study focused on U.S.-centric financial
indicators such as GSPC, DJI, and VIX. While these markets
strongly influence global oil prices, the model might not
fully capture region-specific risk factors relevant to other
major oil-consuming or producing economies. Finally,
although skewed Student’s t and Johnson SU distributions
improved VaR accuracy, tail risk under extreme black-swan
events might still be underestimated due to limited historical
samples of such rare crises.

Future studies should consider extending this framework
by incorporating alternative machine learning algorithms,
such as gradient boosting machines or deep learning
architectures, to compare predictive stability and
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interpretability. Hybrid models that integrate explainable Al
techniques could bridge the gap between predictive power
and managerial transparency. Another promising direction is
the integration of text-based features, such as global news
sentiment, social media analytics, and policy
announcements, which have proven effective in forecasting
commodity market movements. Future research could also
explore cross-market spillover effects by including variables
from foreign exchange, bond, and renewable energy
markets, providing a more global and interconnected view
of oil risk. Additionally, applying the proposed approach to
multi-step forecasting horizons and stress testing under
scenario analysis could help decision-makers prepare for
both routine volatility and systemic disruptions.

Practitioners can benefit from adopting Al-driven risk
prediction models to complement and, in some cases, replace
traditional volatility estimators when managing oil market
exposure. Risk managers should integrate diverse
macroeconomic and geopolitical indicators into their
predictive systems to build resilience against sudden shocks.
At the same time, developing clear communication strategies
around model outputs is essential to ensure that decision-
makers can act effectively on Al-generated risk signals.
Finally, organizations involved in energy trading and policy
planning should consider embedding such advanced
forecasting models into their risk governance frameworks to
strengthen hedging strategies, capital allocation, and market
stability.
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