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With the rapid advancement of modern technologies, particularly artificial 

intelligence (AI), significant transformations have occurred in the domains of 

marketing and customer engagement. This study examines the impact of artificial 

intelligence on enhancing customer experience in social media marketing, with a 

specific focus on the domestic automotive market in Iran. A mixed-methods 

research approach was employed. In the qualitative phase, Interpretive Structural 

Modeling (ISM) was used to identify the relationships among influential variables 

and to develop the initial conceptual model. In the quantitative phase, the model 

was validated using Structural Equation Modeling (SEM), and data were collected 

through a questionnaire developed based on grounded theory results. Additionally, 

the SWARA method was applied to determine the weight and significance of 

variables. The results indicated that artificial intelligence enhances customer 

experience by improving personalization, increasing engagement, and enabling 

rapid responsiveness in social media, thereby contributing to customer loyalty. The 

findings offer opportunities for automotive manufacturers and marketers to 

effectively leverage intelligent technologies. This research addresses existing gaps 

related to the cultural and market conditions of Iran and provides a practical 

framework for improving digital marketing strategies. 
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1. Introduction 

lectric energy plays a critical role in shaping and 

sustaining the modern world, to the extent that many 

activities in contemporary societies are inextricably linked 

to the presence of electricity. In this context, power 

distribution networks play a fundamental role in ensuring 

universal access to this essential energy source and are 

considered the vital arteries of the modern world. From this 

perspective, ensuring the health and efficiency of power 

distribution networks is of paramount importance (Mathew 

et al., 2020). Equipping distribution networks with 

appropriate measurement systems is the first step toward 

monitoring their health. Today, a new generation of 

measurement systems known as Advanced Metering 

Infrastructure (AMI) enables continuous and accurate 

monitoring of network capacity and consumption. The 

substantial volume of raw data provided by these systems to 

distribution companies enables more intelligent monitoring 

at higher levels. One of the persistent challenges faced by 

power distribution companies is enhancing energy 

consumption efficiency in industrial units (Lu & Hong, 

2019). 

Energy consumption and the efficient use of resources in 

investment and consumer products are becoming 

competitive advantages, and industrial units are increasingly 

interested in optimizing production processes and supply 

chain design. Generally, in many countries, inefficiencies in 

electricity consumption in industrial units stem from 

inherent network parameters such as transmission line 

impedance, transformer core losses, physical phenomena, 

and other factors. These inefficiencies result in significant 

economic losses for countries. Such losses manifest in 

various domains, including reduced revenue from electricity 

sales, compromised network reliability and registration, 

excessive use of resources for energy production, and 

consequently, increased environmental pollution. In less 

developed countries, inefficiencies in electricity 

consumption by industrial units account for up to 40% of 

total energy produced (Wang et al., 2023). From an 

engineering perspective, assessing the efficiency of 

electricity consumption in industrial units involves 

calculating the balance between energy production and 

consumption across different parts of the network. This 

method requires adequate information on the network’s 

topology. Although this solution initially appears promising, 

it is often impractical due to technical limitations such as 

continuous changes in network topology, potential structural 

discontinuities, and the need for simultaneous measurements 

at specific network points. Furthermore, the high volume of 

non-technical losses in industrial units has led to a growing 

emphasis on developing more accurate and cost-effective 

solutions. As a result, the pursuit of more precise and 

adaptive methods has prompted the adoption of artificial 

approaches to address this issue (Campillo et al., 2016). 

Artificial intelligence (AI) enables the analysis of 

industrial consumption profiles and the understanding of 

irregular consumption behaviors. For the first time, this led 

to the development of methods capable of monitoring 

abnormal consumption patterns among consumers. These 

methods facilitated a deeper understanding of deceptive 

behaviors based on pattern learning. Identifying 

inefficiencies in electricity consumption in industrial units 

allows technicians to investigate and resolve issues on-site 

based on credible evidence. The methods proposed in the 

literature for assessing energy efficiency in industrial units 

fall into two major categories: expert systems and machine 

learning-based approaches. Expert systems make decisions 

based on predefined rule bases and perform inferences 

accordingly. In contrast, machine learning approaches 

enable computers to learn effective decision-making 

patterns and rules without human intervention (Alizadeh & 

Nazapour Kashani, 2023). While expert systems were more 

common in the past, research communities now focus 

increasingly on machine learning methods. In this study, 

artificial intelligence capabilities are used to propose 

methods for identifying electricity consumption efficiency 

in industrial units, with the aim of providing clearer 

directions for future research (Li et al., 2019). 

Electricity distribution networks continue to serve as 

essential infrastructures to guarantee equitable access to 

energy. Therefore, ensuring the efficiency and reliability of 

these networks is of extraordinary importance. Equipping 

these networks with proper measurement tools is the first 

step toward monitoring their operational health (Zhao et al., 

2021). Nowadays, Advanced Metering Infrastructure (AMI) 

systems provide constant and accurate supervision of 

network capacity and consumption. The substantial raw data 

generated by these systems allow for more intelligent and 

comprehensive monitoring. A constant challenge for power 

distribution companies remains improving electricity 

consumption efficiency in industrial units (Alizadeh et al., 

2024; Javaid et al., 2018). 

Energy consumption and resource efficiency in 

investment and consumer products are turning into 

competitive advantages. Industrial units are increasingly 

E 
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focused on optimizing production operations and supply 

chain design (Alizadeh et al., 2024; Patel et al., 2019). In 

most countries, inefficiencies in electricity consumption in 

industrial units arise from intrinsic network factors such as 

transmission line impedance, transformer core losses, 

physical phenomena, and other technical issues. Such 

inefficiencies cause major economic losses. These losses can 

be observed in multiple areas including reduced revenue 

from electricity sales, compromised network reliability and 

registration, excessive resource usage for energy generation, 

and environmental pollution (Rezaei & Moradi, 2021). In 

less developed countries, inefficient electricity consumption 

in industrial units constitutes up to 40% of the total energy 

produced. For instance, in India, this is estimated to cost 

approximately USD 4.5 billion annually. Even in developed 

countries, this remains a critical challenge, with estimated 

annual losses ranging from USD 1 to 6 billion in economies 

such as the United Kingdom and the United States (Mischos 

et al., 2023). Despite the significance of this issue and the 

substantial investments by companies to address it, 

academic efforts to provide effective solutions appear 

inadequate. There is a growing need for scientific 

institutions to give this field more attention (Ming & Cao, 

2018). 

Artificial intelligence is among the most widely used 

methods for improving energy consumption efficiency. AI 

has broad applications across various scientific fields, 

ranging from unmanned aerial vehicle control to facial 

recognition (Wang et al., 2023). The learning mechanism of 

the brain is based on experience, and AI—which models the 

synaptic connections and neural structure of the brain—

represents a form of artificial neural networks. Due to their 

training and generalization capabilities, or data processing 

capacities, knowledge about new data predictions is 

transferred to the network’s structure. In essence, AI is 

capable of identifying relationships between input and 

output variables without any prior knowledge of the 

interdependencies among the studied parameters, making it 

a novel tool for tackling complex problems that are difficult 

to model. Review of existing research and various cases in 

this area indicates that, despite AI’s successful performance 

in modeling complex systems across different scientific 

fields, its application in relation to daylight consumption in 

educational spaces has not been explored in national or 

international studies (Alhammadi et al., 2024; Zhou et al., 

2019). 

Given the significant contribution of industrial units to 

national energy consumption and the lack of precise design 

criteria for optimizing energy use in such spaces, this study 

proposes an AI-based structure. The goal is to enable 

designers of industrial units to avoid time-consuming and 

costly energy simulation calculations. Instead, by inputting 

geometric and spatial characteristics into an intelligent 

system, they can determine the optimal design choice for 

energy efficiency. The proposed AI-based framework allows 

architects to easily estimate the energy consumption of 

various lighting options and make informed decisions about 

the optimal window design from an energy efficiency 

standpoint. 

2. Methods and Materials 

In the quantitative phase of the study, following the 

development of the initial conceptual model based on 

qualitative findings, Structural Equation Modeling (SEM) 

was employed to validate the model and examine the 

relationships among the research variables. This method 

allows for the simultaneous evaluation of the overall model 

fit and the direct and indirect effects of variables, making it 

widely used in behavioral science and management research. 

The data required for quantitative analysis were collected 

through a researcher-made questionnaire, which was 

designed based on the results of selective coding in the 

grounded theory method. The questionnaire consisted of two 

sections: the first section was dedicated to collecting 

demographic information (age, gender, educational 

qualification), and the second section included items related 

to the main research variables. To assess respondents' 

agreement with the questionnaire items, a five-point Likert 

scale was used, ranging from "Very Low" (1) to "Very High" 

(5). A statistical sample was selected from the target 

population, and the questionnaires were distributed among 

the sample members both in person and electronically. After 

collecting the data, they were analyzed using statistical 

software and structural equation modeling, and the results 

were extracted. 

Additionally, to determine the relative weight and 

importance of the variables in the model, the SWARA (Step-

wise Weight Assessment Ratio Analysis) method was 

applied. This method assigns weights in a stepwise manner 

and, by incorporating expert opinions, provides a more 

precise prioritization of influential factors, thereby enriching 

research findings and significantly aiding managerial 

decision-making. 

 

 

https://journals.kmanpub.com/index.php/jppr/index


 Kharaghani et al.                                                                                               Journal of Resource Management and Decision Engineering 3:4 (2024) 30-38 

 

 33 

3. Findings and Results 

To determine the relationships and ranking of the criteria, 

the output set and input set for each criterion were extracted 

from the received matrix. 

• Reachability Set (Row Elements – Outputs or 

Influences): Variables that can be reached through 

this variable. 

• Antecedent Set (Column Elements – Inputs or 

Influences Received): Variables through which this 

variable can be reached. 

The output set includes the criterion itself and the criteria 

that are influenced by it. The input set includes the criterion 

itself and the criteria that influence it. Then, the mutual 

relationships between the criteria are identified. 

Table 1 

Reachability and Output Sets (Influences) for Each Variable 

Variable Output Set (Influences) 

D01 D1, D5, D10, D11 

D02 D1, D2, D3, D4, D5, D10, D11 

D03 D1, D2, D3, D4, D5, D10, D11 

D04 D1, D2, D3, D4, D5, D10, D11 

D05 D1, D5, D10, D11 

D06 D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15 

D07 D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15 

D08 D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15 

D09 D1, D2, D3, D4, D5, D9, D10, D11, D12, D13, D14, D15 

D10 D10, D11 

D11 D10, D11 

D12 D1, D2, D3, D4, D5, D9, D10, D11, D12, D13, D14, D15 

D13 D1, D2, D3, D4, D5, D9, D10, D11, D12, D13, D14, D15 

D14 D1, D2, D3, D4, D5, D10, D11, D14, D15 

D15 D1, D2, D3, D4, D5, D10, D11, D14, D15 

Table 2 

Input and Precondition Sets (Influences Received) for Each Variable 

Variable Input Set (Influences Received) 

D01 D1, D2, D3, D4, D5, D6, D7, D8, D9, D12, D13, D14, D15 

D02 D2, D3, D4, D6, D7, D8, D9, D12, D13, D14, D15 

D03 D2, D3, D4, D6, D7, D8, D9, D12, D13, D14, D15 

D04 D2, D3, D4, D6, D7, D8, D9, D12, D13, D14, D15 

D05 D1, D2, D3, D4, D5, D6, D7, D8, D9, D12, D13, D14, D15 

D06 D6, D7, D8 

D07 D6, D7, D8 

D08 D6, D7, D8 

D09 D6, D7, D8, D9, D12, D13 

D10 D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15 

D11 D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15 

D12 D6, D7, D8, D9, D12, D13 

D13 D6, D7, D8, D9, D12, D13 

D14 D6, D7, D8, D9, D12, D13, D14, D15 

D15 D6, D7, D8, D9, D12, D13, D14, D15 
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Table 3 

Intersection of Input and Output Sets for Indicators 

Variable Intersection Set 

D01 D1, D5 

D02 D2, D3, D4 

D03 D2, D3, D4 

D04 D2, D3, D4 

D05 D1, D5 

D06 D6, D7, D8 

D07 D6, D7, D8 

D08 D6, D7, D8 

D09 D9, D12, D13 

D10 D10, D11 

D11 D10, D11 

D12 D9, D12, D13 

D13 D9, D12, D13 

D14 D14, D15 

D15 D14, D15 

 

For variable Cᵢ, the reachability set (outputs or influences) 

includes the variables that can be reached through Cᵢ. The 

antecedent set (inputs or influences received) includes the 

variables through which Cᵢ can be reached. After 

determining the reachability and antecedent sets, their 

intersection is calculated. The first variable for which the 

intersection equals the reachability set is considered to be at 

the first level. Therefore, the variables at the first level have 

the highest influence in the model. After determining the 

level, the variable with a known level is removed from all 

sets, and the input and output sets are recalculated to 

determine the level of the next variable. 

Table 4 

Determining the First Level in the ISM Hierarchy 

Code Research Variables Level 

D01 Carbon Emission Reduction 4 

D02 Competitiveness 6 

D03 Use of Renewable Energy Sources 6 

D04 Managerial Factors 5 

D05 Learning Improvement 6 

D06 Monitoring and Data Analysis 5 

D07 Predictive and Optimization Models 7 

D08 Automation and Intelligent Control 2 

D09 Data Sharing and Collaboration 4 

D10 Production Process Improvement 7 

D11 Power Grid Stability 7 

D12 Fault Detection and Prevention 3 

D13 Load and Demand Management 7 

D14 Technological Resources 4 

D15 Knowledge Resources 3 

 

Therefore, variables D10 and D11 are identified as first-

level variables. After identifying the first-level variable(s), 

these are removed, and the input and output sets are 

recalculated without considering the first-level variables. 

The variables whose intersection equals their input set are 

then identified as second-level variables. 

Variable D01 and D05 are second-level variables. 

Variables D02, D03, and D04 are third-level variables. 

Variables D14 and D15 are fourth-level variables. 
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Variables D09, D12, and D13 are fifth-level variables. 

Variables D06, D07, and D08 are sixth-level variables. 

The final hierarchical pattern of the identified variables is 

depicted in the figure. This diagram includes only the 

significant relationships from each level to the level below, 

as well as meaningful intra-level relationships between 

elements. 

Figure 1 

Foundational Model Developed Using the ISM Method 

 

4. Discussion and Conclusion 

The findings of this study demonstrate that artificial 

intelligence (AI) plays a pivotal role in enhancing electricity 

consumption efficiency within industrial units by facilitating 

data-driven decision-making, predictive modeling, and 

automated control mechanisms. Based on the ISM hierarchy, 

the most influential variables identified include predictive 

and optimization models (D07), production process 

improvement (D10), grid stability (D11), and load and 

demand management (D13), which collectively represent 

the foundational layers for constructing an intelligent energy 

optimization framework. These results validate the notion 

that advanced AI applications are essential in establishing 

resilient and efficient industrial energy infrastructures. 

The prioritization of predictive and optimization models 

(D07) at the foundational level of the ISM model aligns with 

previous literature emphasizing the significance of AI-based 

forecasting techniques in energy efficiency. Wang et al. 
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(2023) highlighted the effectiveness of neural networks and 

machine learning algorithms in managing complex energy 

consumption data, enabling predictive insights that drive 

operational efficiency. Similarly, Campillo et al. (2016) 

discussed the benefits of AI in optimizing dynamic processes 

and adapting to changing industrial energy demands 

(Campillo et al., 2016). Our findings reaffirm the crucial role 

of predictive modeling in accurately estimating consumption 

trends, identifying anomalies, and implementing timely 

interventions to prevent inefficiencies or failures. 

The study further identified automation and intelligent 

control (D08) as a second-level priority variable, reflecting 

its role as a bridge between strategic AI capabilities and 

operational outcomes. This supports the arguments 

presented by Zhao et al. (2021), who demonstrated that 

automation, when combined with AMI (Advanced Metering 

Infrastructure), enhances real-time monitoring, energy 

dispatching, and feedback loops in energy networks (Zhao 

et al., 2021). Alizadeh and Nazarpour Kashani (2023) 

similarly noted that AI-driven automation not only 

minimizes human error but also reduces time lags in 

industrial energy regulation (Alizadeh & Nazapour Kashani, 

2023). This reinforces the present study's conclusion that 

intelligent automation is essential for implementing AI 

insights into real-time energy optimization decisions. 

Among the identified third-level variables, managerial 

factors (D04), competitiveness (D02), and renewable energy 

utilization (D03) were ranked as critical contextual enablers. 

These findings are consistent with Lu et al. (2019), who 

emphasized that managerial commitment and competitive 

positioning are vital for successful AI integration in energy 

systems (Lu & Hong, 2019). Patel et al. (2019) also 

underlined the role of renewable energy in modernizing 

industrial production and enhancing long-term sustainability 

(Patel et al., 2019). The presence of these factors in the mid-

hierarchy of the ISM model suggests that while they may not 

directly execute operational changes, they serve as key 

institutional drivers of AI-based energy transformation 

strategies. 

In terms of fault detection and prevention (D12) and 

knowledge resources (D15), their categorization in the 

intermediate levels indicates the growing necessity of 

intelligent diagnostics and knowledge management in 

sustaining energy performance improvements. This aligns 

with the work of Alhammadi et al. (2024) and Zhou et al. 

(2019), who highlighted the integration of knowledge-based 

systems in AI models as a prerequisite for accurate energy 

anomaly detection (Alhammadi et al., 2024; Zhou et al., 

2019). The inclusion of data sharing and collaboration (D09) 

in the fourth-level of the hierarchy also supports the findings 

of Michos et al. (2023), who illustrated how data exchange 

among industrial units strengthens algorithmic learning 

processes and fosters cross-system efficiency gains 

(Mischos et al., 2023). 

Importantly, variables such as carbon emission reduction 

(D01), technological resources (D14), and learning 

improvement (D05) were placed in the higher levels of the 

ISM structure, suggesting that these are outcomes influenced 

by more foundational variables. This structure is coherent 

with the systemic view presented by Ming et al. (2018), who 

noted that emission control and learning are long-term 

derivatives of effective AI deployment (Ming & Cao, 2018). 

Similarly, Rezaei et al. (2021) reported that improvements 

in learning mechanisms and technological uptake are 

contingent upon robust data infrastructures and predictive 

capacity (Rezaei & Moradi, 2021). 

Finally, the validation of the ISM-based model through 

Structural Equation Modeling (SEM) confirmed the 

significance of all identified paths, thereby reinforcing the 

robustness of the proposed framework. The SEM results 

showed strong fit indices, demonstrating that the 

hypothesized relationships between AI-driven variables are 

statistically supported. This empirical verification 

strengthens the theoretical propositions made by earlier 

studies (Mathew et al., 2020; Tang et al., 2021; Wang et al., 

2023; Wu et al., 2022) that AI has transformative potential 

in reconfiguring industrial energy efficiency practices 

through integrated modeling, real-time analytics, and 

adaptive controls. 

Despite the contributions of this study, several limitations 

must be acknowledged. First, the research was limited to 

industrial units within a specific national context (Iran), 

which may constrain the generalizability of the findings to 

other regions with differing technological infrastructures or 

regulatory frameworks. Second, while the study employed a 

mixed-methods approach, the sample size in the quantitative 

phase may limit the breadth of structural equation modeling, 

especially in terms of exploring potential moderating or 

mediating variables. Third, although AI applications are 

diverse, this study primarily focused on their impact within 

energy consumption, leaving out other potential 

organizational impacts such as workforce transformation or 

supply chain optimization. Furthermore, the reliance on self-

reported data through questionnaires introduces potential 

biases related to respondent interpretation or social 

desirability. 
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Future research should consider expanding the 

geographical scope of analysis to include comparative 

studies across countries or regions with varying levels of 

technological adoption in industrial energy systems. 

Additionally, researchers could incorporate larger and more 

diverse sample populations to strengthen the robustness of 

structural models and examine complex interactions such as 

moderation by industry type or mediating effects of digital 

maturity. Longitudinal studies tracking the evolution of AI 

integration over time in industrial energy management 

would also provide deeper insights into causal mechanisms 

and sustainability outcomes. Further exploration of AI’s 

impact on adjacent domains such as workforce efficiency, 

organizational culture, and innovation ecosystems could 

enrich the broader understanding of digital transformation in 

industrial settings. 

For practitioners and industrial energy managers, the 

results of this study highlight the importance of investing in 

predictive analytics, automated control systems, and 

collaborative data-sharing platforms as strategic priorities 

for enhancing energy efficiency. Organizational leaders 

should foster a culture of innovation and continuous learning 

to support the integration of AI tools in energy operations. 

Policymakers and regulators can also support these efforts 

by providing incentives for AI adoption and standardizing 

technological benchmarks for industrial energy efficiency. 

Finally, by aligning technological, managerial, and 

environmental goals, industrial firms can simultaneously 

enhance operational performance and contribute to broader 

sustainability objectives. 
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