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In recent years, the increasing complexity of project implementation, the 

competitive nature of the business environment, and the constraints on 

organizational resources have heightened the importance of project management in 

achieving project objectives. Consequently, during the execution phases of 

projects, clients seek to enhance quality, reduce execution time and costs, and 

minimize risks, which constitute their primary goals. This study focuses on 

optimizing the components of the project management “survival triangle”—time, 

cost, and quality—in civil engineering projects, specifically through a case study 

of the Sartiuk Haftkel Reservoir Dam. For this purpose, a genetic algorithm was 

employed. Optimization was carried out in three separate scenarios, each targeting 

one of the elements of the survival triangle, and finally, a composite optimization 

was conducted that considered all three elements simultaneously. The coding 

related to objective functions and optimization algorithms was performed using 

MATLAB software. The results indicate the satisfactory performance of the 

genetic algorithm. Furthermore, for quality index optimization, the genetic 

algorithm yielded the best optimal solution, and in the composite optimization 

considering all indices simultaneously, it again provided the most effective result. 
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1. Introduction 

he increasing complexity of modern construction and 

infrastructure projects, alongside escalating 

competition and limited resources, has intensified the need 

for optimized management of key project components—

namely time, cost, quality, and risk. These elements, often 

referred to as the “survival triangle” of project management, 

must be balanced strategically to ensure successful project 

delivery. Optimization in this context is no longer a luxury 

but a necessity, particularly for large-scale civil engineering 

projects where even marginal improvements in scheduling, 

budgeting, or quality assurance can lead to significant 

economic and operational advantages (Liu, 2024). As the 

demand for integrated decision-making grows, advanced 

computational methods, such as genetic algorithms and 

artificial intelligence, have emerged as powerful tools for 

multi-objective optimization in construction management. 

The time-cost-quality-risk trade-off challenge has 

attracted considerable scholarly and industrial attention. 

T 
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Traditional approaches often failed to address the inherent 

complexity and interdependency of these project parameters, 

especially under uncertainty. Genetic algorithms (GAs), 

inspired by the process of natural selection, have proven 

particularly effective in construction scheduling due to their 

capability to search large solution spaces and avoid local 

optima. Studies such as those by Feng et al. (Feng et al., 

1997) and Hegazy (Hegazy, 1999) demonstrate the 

applicability of GAs in construction time-cost trade-off 

analysis, underscoring their adaptability in handling 

nonlinear, multi-constraint problems. Likewise, Que (Que, 

2002) emphasized the importance of incorporating practical 

constraints into GA-based models, highlighting how 

algorithmic modifications can enhance the feasibility of real-

world applications. 

More recent works have extended these models by 

integrating intelligent systems. For example, the research by 

Daisy et al. (Daisy et al., 2004) introduced a multi-objective 

GA framework that effectively balances time and cost, 

serving as a precursor to later hybridized methods that 

incorporate neural networks and fuzzy logic. Building on 

this evolution, Sadeghi Askari and Soleimani Amiri 

(Sadeghi Askari & Soleimani Amiri, 2019) proposed an 

intelligent activity-based costing model, combining genetic 

algorithms with neural networks to increase accuracy in 

resource allocation. This integration aligns with broader 

trends in smart project management, where predictive 

analytics and machine learning are reshaping decision-

support tools (Khalimonchuk, 2024). 

Optimization is also central to supply chain and 

manufacturing systems, as shown in Cui et al.'s (Cui et al., 

2023) cost and robust control strategy for dynamic supply 

chains. The relevance of these models transcends industries, 

indicating that optimization frameworks developed for one 

domain—such as supply chains—can inform methods in 

construction project planning. Similarly, Derpich (Derpich, 

2024) explored multimodal transportation optimization with 

a focus on cost reduction and CO₂ emissions, suggesting the 

compatibility of environmental and economic objectives in 

large-scale infrastructure projects. These insights are 

valuable for dam construction and related ventures, where 

sustainability and operational efficiency are interwoven. 

In the context of uncertainty and variability, Roth et al. 

(Roth et al., 2022) addressed tolerance-cost optimization by 

accounting for sampling-induced uncertainties—an 

approach with strong parallels in construction, where 

material variability, environmental conditions, and human 

factors contribute to execution risk. Their framework 

underscores the importance of probabilistic modeling, which 

is similarly advocated by Zahraie and Tavakolan (Zahraie & 

Tavakolan, 2009) in their study of stochastic time-cost-

resource optimization using nondominated sorting genetic 

algorithms (NSGA) and discrete fuzzy sets. Such methods 

enhance the robustness of project planning by offering 

multiple Pareto-optimal solutions under uncertainty. 

While many studies focus on cost and time, incorporating 

quality and risk into optimization frameworks remains a 

critical step toward holistic project evaluation. Liang Yang 

et al. (Liang Yang et al., 2022) presented a preventive 

maintenance strategy that considers energy efficiency and 

quality costs, reflecting how broader metrics such as system 

resilience and long-term performance must be included in 

optimization criteria. This comprehensive perspective is 

mirrored in Gu's (Gu, 2022) research on supply chain cost 

optimization in the dairy industry, where service quality 

plays a significant role alongside operational expenses. 

Another crucial development in this field is the 

application of hybrid intelligent systems that combine 

genetic algorithms with other machine learning models. 

Nezamoddini et al. (Nezamoddini et al., 2020) proposed a 

risk-based optimization framework for integrated supply 

chains using genetic algorithms and artificial neural 

networks. Their methodology offers an adaptable 

architecture that can be extended to infrastructure projects 

where multi-criteria risk assessments are essential. 

Similarly, Mumali and Kałkowska (Mumali & Kałkowska, 

2024) explored intelligent manufacturing process selection 

by merging artificial neural networks, fuzzy logic, and 

genetic algorithms—an approach that demonstrates the 

promise of combining heuristic and learning-based models 

in complex optimization problems. 

In the realm of construction-specific AI integration, Liu 

(Liu, 2024) demonstrated how artificial intelligence tools, 

including machine learning algorithms and data-driven 

models, can be employed to optimize both costs and 

schedules in building construction. These tools facilitate 

real-time decision-making, enhance predictive capabilities, 

and allow for the dynamic adjustment of project variables. 

Importantly, AI models also improve the interpretability of 

optimization outputs, enabling project managers to make 

informed decisions grounded in data rather than intuition 

alone. 

A unified insight across the literature is the increasing use 

of convergence performance analysis to assess the reliability 

and efficiency of different optimization algorithms. For 

example, convergence graphs comparing algorithms such as 
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Simulated Annealing (SA), Tabu Search (TS), and Cuckoo 

Optimization often reveal that genetic algorithms 

outperform others in both speed and precision (Daisy et al., 

2004; Feng et al., 1997; Que, 2002). Moreover, the 

robustness of GAs is evident in multi-scenario analysis, 

where time, cost, quality, and risk are treated both 

independently and simultaneously. This capability aligns 

with real-world demands where trade-offs are not merely 

linear or isolated but interdependent and dynamic. 

In light of these findings, this study adopts a multi-

scenario optimization approach for the Sartiuk Haftkel 

Reservoir Dam construction project. Using genetic 

algorithms as the core technique, the study seeks to 

separately and jointly optimize the project's time, cost, 

quality, and risk factors.  

2. Methods and Materials 

To evaluate the designed algorithm, an actual technical 

case from practical projects was utilized, and risk-related 

data were added to it in this study. Five different scenarios 

were implemented for the target problem. In four of these 

scenarios, each of the factors—time, cost, quality, and risk—

was optimized separately. In the final scenario, all four 

factors were considered simultaneously. The objective 

function value for each case is calculated as follows: 

Case 1: Time Optimization 

In this case, the objective function is defined as the total 

duration required to complete all activities. This value, 

which corresponds to the finish time of the last activity, is 

calculated considering the precedence relationships among 

activities and is denoted by T. 

Case 2: Cost Optimization 

In this case, the objective function is the total cost 

incurred for completing all activities. This value is 

calculated simply by summing the individual costs of each 

activity and is denoted by C. 

Case 3: Quality Optimization 

In this case, the objective function is the total effective 

quality of all activities. To compute this, the effective quality 

of each activity on the entire project is first calculated by 

multiplying the impact percentage by the quality score of the 

respective activity. Then, the resulting values are summed 

and denoted by Q. 

Case 4: Risk Optimization 

In this case (similar to Case 3), the objective function is 

the total effective risk of all activities. To compute this, the 

effective risk of each activity on the overall project is first 

determined by multiplying the impact percentage by the 

corresponding risk score of the activity. The resulting values 

are then summed and denoted by R. 

Case 5: Simultaneous Optimization of Time, Cost, 

Quality, and Risk 

In this case, the objective function is computed using 

Equation 1: 

Equation (1): 

 

In the above equation, T, C, Q, and R represent the total 

time, cost, quality, and risk of implementing the project for 

a given solution or execution method. The first component 

represents the duration, the second component the cost, the 

third the quality (as a decreasing value), and the fourth the 

risk, all of which are used to compute the objective function 

value for each solution. Since the units of measurement for 

the survival triangle components differ, the values are 

normalized to range between zero and one based on the 

above formula, making them dimensionless and therefore 

comparable and summable. 

In this study’s technical case, the minimum time (T_min) 

and maximum time (T_max) are 478 and 745 days, 

respectively. The minimum cost (C_min) and maximum cost 

(C_max) are 531,272,672,006 IRR and 880,236,020,693 

IRR, respectively. The minimum quality (Q_min) and 

maximum quality (Q_max) are 62 and 98, respectively. The 

minimum risk (R_min) and maximum risk (R_max) are 0.25 

and 0.44, respectively. 

3. Findings and Results 

The individual objective functions were considered as the 

optimization of cost, time, risk, and quality in such a way 

that during each optimization process, only one of the above-

mentioned functions was minimized or maximized. The 

number of optimization variables in each scenario was 23, 

corresponding to 23 rows from a typical bill of quantities for 

earth dams. Table 1 shows the optimization results for 

Scenario 1 (time) using various algorithms. The table also 

reports the percentage error or deviation relative to the best 

solution provided by the top-performing algorithms in this 

scenario, which were BOA, HHO, and GA. 



Moradi & Abbasi Dezfouli                                                                          Journal of Resource Management and Decision Engineering 3:3 (2024) 135-145 

 

 138 

Table 1 

Results of Various Algorithms for Scenario 1 (Time Optimization) 

Algorithm Time Error (%) 

GA 478 0 

SA 559 0.169456 

TS 545 0.140167 

BOA 478 0 

CPA 511 0.069038 

HHO 478 0 

Figure 1 

Convergence Chart for Time Optimization in the Sartiuk Haftkel Reservoir Dam Project 

 

In Figure 1, the convergence graph for Scenario 1 (time) 

using various algorithms is illustrated. It can be observed 

that BOA, HHO, and GA quickly converged to the optimal 

value of 478 days in the early iterations, whereas the 

convergence speed of other algorithms was slower. The 

highest error percentage belonged to the SA algorithm at 

16%, while the lowest was associated with CPA at 6%. 

Table 2 presents the optimization results for Scenario 2 

(cost) using different algorithms. The table includes the 

percentage error relative to the best solution reported by the 

top algorithms, which in this scenario were HHO, GA, and 

CPA. 

Table 2 

Results of Various Algorithms for Scenario 2 (Cost Optimization) 

Algorithm Cost (IRR) Error (%) 

GA 530,773,130,016.25 0 

SA 536,788,583,955.35 0.011333 

TS 538,797,077,389.35 0.015117 

BOA 538,940,274,531.55 0.015387 

CPA 530,773,130,016.25 0 

HHO 530,773,130,016.25 0 

Figure 2 

Convergence Chart for Cost Optimization in the Sartiuk Haftkel Reservoir Dam Project 
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In Figure 2, the convergence graph for Scenario 2 (cost) 

using various algorithms is shown. GA, HHO, and CPA 

algorithms quickly converged to the optimal value in the 

early iterations, while others were slower. The highest error 

was recorded for the TS algorithm at 1.5%, and the lowest 

for the SA algorithm at 1.1%. 

The optimization results for Scenario 3 (quality) using 

various algorithms are presented in the following table. The 

percentage error compared to the best solution reported by 

the best algorithm (GA) is also included. 

Table 3 

Results of Various Algorithms for Scenario 3 (Quality Optimization) 

Algorithm Quality Error (%) 

GA 99.1063 0 

SA 35.6934 0.639847 

TS 36.6334 0.630363 

BOA 35.8923 0.637840 

CPA 36.8308 0.628371 

HHO 36.8736 0.627939 
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Figure 3 

Convergence Chart for Quality Optimization in the Sartiuk Haftkel Reservoir Dam Project 

 

In Figure 3, the convergence graph for Scenario 3 

(quality) using different algorithms is shown. It is evident 

that the GA algorithm rapidly converged to the optimal value 

during early iterations, whereas the convergence of other 

algorithms was significantly slower. The highest error was 

observed in the SA algorithm at 64%, while the lowest error 

was found in the HHO algorithm at 62%. 

Table 4 shows the optimization results for Scenario 4 

(risk) using various algorithms. The percentage error relative 

to the best results achieved by the GA and HHO algorithms 

is also reported. 

Table 4 

Results of Various Algorithms for Scenario 4 (Risk Optimization) 

Algorithm Risk Error (%) 

GA 0.785451 0 

SA 0.786394 0.001201 

TS 0.787170 0.002189 

BOA 0.791712 0.007971 

CPA 0.785531 0.000102 

HHO 0.785451 0 
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Figure 4 

Convergence Chart for Risk Optimization in the Sartiuk Haftkel Reservoir Dam Project 

 

In Figure 4, the convergence graph for Scenario 4 (risk) 

using different algorithms is shown. GA and HHO rapidly 

reached the optimal value in early iterations, whereas other 

algorithms showed slower convergence. The highest error 

was reported for the BOA algorithm at 0.7%, and the lowest 

for CPA at 0.01%. 

Table 5 presents the results for Scenario 5 (overall 

optimization) using various algorithms. The percentage 

deviation relative to the best outcomes achieved by GA and 

HHO algorithms is also included. 

Table 5 

Results of Various Algorithms for Scenario 5 (Overall Optimization) 

Algorithm Overall Error (%) 

GA 27.4727 0 

SA 27.6311 0.005766 

TS 27.6259 0.005576 

BOA 27.5185 0.001667 

CPA 27.5277 0.002002 

HHO 27.4727 0 
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Figure 5 

Convergence Chart for Overall Multi-Objective Optimization in the Sartiuk Haftkel Reservoir Dam Project 

 

In Figure 5, the convergence behavior for Scenario 5 

(overall optimization) is illustrated using different 

algorithms. GA and HHO quickly converged to the optimal 

value during early iterations, while other algorithms 

exhibited slower convergence rates. The highest error was 

associated with the SA algorithm at 0.57%, and the lowest 

error belonged to the BOA algorithm at 0.16%. 

4. Discussion and Conclusion 

The results of this study, focused on the optimization of 

time, cost, quality, and risk components in the Sartiuk 

Haftkel Reservoir Dam construction project using various 

metaheuristic algorithms, confirmed the superior 

performance of Genetic Algorithms (GA) and several 

hybridized models across all scenarios. In the first scenario, 

which involved time optimization, GA, BOA, and HHO 

achieved the optimal completion duration of 478 days with 

a zero error percentage, while other algorithms such as SA 

and TS displayed slower convergence and higher error 

margins. This finding aligns with earlier studies 

demonstrating the capability of genetic algorithms to 

efficiently handle the time-cost trade-off problem in 

construction planning (Feng et al., 1997; Hegazy, 1999). 

Similarly, the rapid convergence observed in GA echoes the 

outcomes reported by Daisy et al. (Daisy et al., 2004), who 

emphasized the strength of GA in identifying optimal project 

schedules in early iterations, thus saving considerable 

computational time. 

The second scenario, focused on cost optimization, 

further highlighted the robustness of GA and HHO, both 

producing identical cost outputs with zero error. The 

consistency of GA in cost-related optimization is well 

documented in the literature. For example, Cui et al. (Cui et 

al., 2023) demonstrated that GA-based strategies perform 

well in complex supply chain systems, especially when 

optimizing cost functions under dynamic conditions. 

Similarly, the integration of hybrid models, such as those 

using artificial neural networks, has been shown to enhance 

the predictive accuracy of cost estimates in uncertain 

environments (Nezamoddini et al., 2020). These findings are 

also supported by Khalimonchuk (Khalimonchuk, 2024), 

who showed that machine learning and intelligent 

algorithms can significantly reduce cost variability and 

improve financial outcomes in technological enterprises. 

Thus, the performance of GA in this study further reinforces 

its cross-disciplinary applicability and computational 

efficiency. 
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In the third scenario, concerning quality optimization, GA 

once again outperformed all other algorithms, converging to 

the highest effective quality score of 99.1. Other algorithms, 

such as SA and TS, demonstrated considerably higher error 

rates exceeding 60%. This outcome can be attributed to 

GA’s capacity for effective exploration and exploitation in 

multi-objective spaces, particularly when the objective 

function incorporates qualitative factors. The findings 

resonate with the work of Liang Yang et al. (Liang Yang et 

al., 2022), who optimized quality and energy efficiency in 

preventive maintenance systems, showing that multi-criteria 

GAs can address both tangible and intangible objectives 

simultaneously. Moreover, the capability of GA to model 

quality as a critical project success factor aligns with the 

broader argument made by Gu (Gu, 2022), who stressed the 

importance of incorporating service and product quality into 

optimization frameworks for industrial networks. 

Scenario four, addressing risk optimization, illustrated 

that both GA and HHO delivered optimal values with 

minimal error rates, followed closely by CPA. The 

effectiveness of GA in risk-based scenarios is well supported 

in prior work. For instance, Nezamoddini et al. 

(Nezamoddini et al., 2020) utilized a risk-based optimization 

framework combining genetic algorithms and neural 

networks to improve supply chain resilience, emphasizing 

GA’s capacity to account for risk propagation in complex 

systems. Likewise, Roth et al. (Roth et al., 2022) 

demonstrated that optimization models that accommodate 

uncertainty and stochastic variation—particularly through 

sampling-induced error handling—can enhance decision-

making in environments characterized by fluctuating risk 

profiles. This further substantiates the relevance of GA in 

scenarios where project variability and exposure are high, 

such as large-scale construction and infrastructure 

development. 

The fifth and final scenario, which examined the 

simultaneous optimization of time, cost, quality, and risk, 

offered the most integrative insight. Once again, GA and 

HHO achieved optimal objective function values with zero 

error, indicating their suitability for multi-objective and 

composite optimization problems. This result demonstrates 

the practicality of using GAs in comprehensive project 

planning models, a claim echoed by studies such as that of 

Zahraie and Tavakolan (Zahraie & Tavakolan, 2009), who 

used nondominated sorting genetic algorithms (NSGA) and 

fuzzy sets to handle stochastic trade-offs in time-cost-

resource optimization. Furthermore, Derpich (Derpich, 

2024) explored multimodal transportation optimization and 

found that intelligent algorithms like GA can successfully 

manage multiple conflicting objectives, including cost and 

environmental impact. These studies collectively affirm that 

GA is not only efficient in individual component 

optimization but also capable of producing high-quality 

solutions in holistic project models. 

The comparative convergence analysis conducted in this 

study further validates the effectiveness of GA, BOA, and 

HHO. Figures across all scenarios illustrated that these 

algorithms converged significantly faster to optimal 

solutions than SA and TS. This corroborates the findings of 

earlier researchers such as Daisy et al. (Daisy et al., 2004) 

and Que (Que, 2002), who documented GA's advantage in 

convergence rate and solution stability. In particular, the 

combination of fast convergence and low error in multi-

objective settings suggests a critical advantage for project 

managers needing real-time or near-real-time optimization 

tools. Liu (Liu, 2024) reinforced this by demonstrating how 

artificial intelligence techniques integrated with construction 

management systems can dramatically enhance 

responsiveness and agility in planning and scheduling tasks. 

In addition, the modular adaptability of GA observed in 

this study reflects the algorithm's compatibility with hybrid 

intelligent systems. Research by Mumali and Kałkowska 

(Mumali & Kałkowska, 2024) highlighted how genetic 

algorithms can be combined with fuzzy logic and neural 

networks for intelligent manufacturing process selection, a 

technique highly translatable to construction environments 

where uncertainty, resource variability, and performance 

metrics are intertwined. The flexibility of GA to 

accommodate various parameters and weightings also aligns 

with the research of Sadeghi Askari (Sadeghi Askari & 

Soleimani Amiri, 2019), who used a GA-neural hybrid 

model for intelligent cost estimation in the banking sector, 

revealing its broader utility across industries. 

From a methodological perspective, the comprehensive 

modeling of the four project dimensions—time, cost, 

quality, and risk—using real-world data and optimization 

techniques enhances the external validity of the findings. 

The formulation of the fifth scenario, in particular, which 

normalized and aggregated all indicators into a unified 

objective function, demonstrates the model’s capacity to 

support integrated decision-making. Such multi-scenario 

evaluations resonate with Cui et al.’s (Cui et al., 2023) 

dynamic supply chain models and provide a foundation for 

extending optimization beyond construction to other 

domains such as transportation, logistics, and public utilities. 



Moradi & Abbasi Dezfouli                                                                          Journal of Resource Management and Decision Engineering 3:3 (2024) 135-145 

 

 144 

Despite the robust findings, this study has several 

limitations. First, the optimization model was applied to a 

single case study—the Sartiuk Haftkel Reservoir Dam—

which may limit the generalizability of results to other types 

of construction projects with different scopes, constraints, 

and stakeholder requirements. Second, while multiple 

optimization algorithms were tested, not all modern 

metaheuristic approaches (e.g., Ant Colony Optimization, 

Particle Swarm Optimization) were included in the 

comparison, possibly omitting some competitive 

alternatives. Third, although the model considered four 

critical dimensions, the potential influence of other project 

factors such as stakeholder satisfaction, environmental 

compliance, or social impact was not examined. Finally, 

while algorithmic performance was evaluated primarily 

through convergence speed and error rate, other important 

metrics like robustness under dynamic conditions or 

sensitivity to parameter tuning were not extensively 

analyzed. 

Future research should explore the extension of this 

optimization framework to a broader range of projects across 

different sectors and geographical regions. Comparative 

studies involving additional intelligent algorithms, including 

deep learning models or evolutionary strategies, may also 

yield deeper insights into performance trade-offs. 

Furthermore, future work can incorporate real-time data 

streams and digital twin models to dynamically update 

optimization parameters during project execution. 

Integrating behavioral and socio-environmental variables 

into the optimization framework could also make the model 

more reflective of real-world complexities. Moreover, 

investigating the scalability of the model for mega-projects 

with hundreds of interdependent activities could help 

validate the approach for national or transnational 

infrastructure initiatives. Finally, applying reinforcement 

learning techniques to adjust parameter weights over time 

may enhance the adaptability and predictive accuracy of 

multi-objective optimization tools. 

For practitioners, the findings of this study suggest that 

integrating genetic algorithms into construction project 

planning can significantly improve efficiency across critical 

dimensions. Project managers should consider adopting 

hybrid optimization tools that balance time, cost, quality, 

and risk, especially in large-scale or resource-constrained 

environments. Tools and platforms that visualize 

convergence performance in real time can aid in monitoring 

algorithm efficiency and identifying potential performance 

bottlenecks. Moreover, using intelligent systems for 

decision support allows teams to simulate multiple 

scenarios, enabling better strategic planning and risk 

mitigation. Finally, organizations should invest in training 

and capacity-building initiatives to enhance the technical 

competencies required to implement and interpret multi-

objective optimization models effectively. 
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