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The purpose of this study is to identify the components of inventory control and 

maintenance with a focus on optimizing cost and time. By employing a systematic 

review and meta-synthesis approach, the researcher analyzed the results and 

findings of previous studies. Using the seven-step method of Sandelowski and 

Barroso, the influential factors were identified. Out of 198 articles, 35 were selected 

based on the CASP method. The validity of the analysis was confirmed using the 

Kappa coefficient, which was calculated at 0.775. The Kappa index was also used 

to assess reliability and quality control, indicating a high level of agreement for the 

identified indicators. Data collected were analyzed using MAXQDA software, 

resulting in the identification of six dimensions and 33 indicators for the model. To 

identify the components of the model, the meta-synthesis technique was applied. 

The identified dimensions include: inventory control, maintenance and repair, cost-

related dimension, time-related dimension, technology and information systems, 

and planning and decision-making. Developing a comprehensive program based on 

risk analysis, forecasting future needs, analyzing failure trends, and allocating 

resources is essential for optimal management in this industry. Decision-making 

should be evidence-based and rely on multi-dimensional analyses to strike a 

balance between time, cost, service quality, and infrastructure sustainability. 

Stakeholder engagement, including operators, managers, engineers, and customers, 

in the decision-making process can facilitate a better understanding of priorities 

and challenges. Given the limited resources and complexity of water and 

wastewater service structures, the use of decision-support tools such as scenario 

analysis and decision support systems can enable more accurate planning and 

improved responsiveness in crisis situations. 
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Mazandaran Province Water and Wastewater Company. 

https://doi.org/10.61838/kman.jrmde.3.2.8
http://creativecommons.org/licenses/by-nc/4.0
http://creativecommons.org/licenses/by-nc/4.0
https://orcid.org/0009-0009-4773-8575
https://orcid.org/0000-0002-8483-9625
https://orcid.org/0000-0002-1197-2417
https://orcid.org/0009-0001-8252-9746
https://crossmark.crossref.org/dialog/?doi=10.61838/kman.jrmde.3.2.8
http://creativecommons.org/licenses/by-nc/4.0


 Salavati et al.                                                                                                       Journal of Resource Management and Decision Engineering 3:2 (2024) 62-72 

 

 63 

1. Introduction 

n today's rapidly evolving industrial landscape, the 

effectiveness of inventory control and maintenance 

management is considered a cornerstone of operational 

excellence. As companies strive for leaner operations and 

competitive advantage, the pressure to optimize both cost 

and time in these domains has intensified. Inventory and 

maintenance decisions not only influence organizational 

performance but also significantly impact asset longevity, 

resource allocation, and customer satisfaction. Particularly 

in sectors such as water and wastewater management, where 

reliability and service continuity are critical, these functions 

must be strategically aligned to ensure optimal system 

performance and sustainable operations (Silva, 2023). 

Inventory control, as a fundamental pillar of supply chain 

management, encompasses a wide array of decisions, 

including stock replenishment policies, demand forecasting, 

safety stock levels, and order scheduling. Poor inventory 

practices can lead to overstocking, stockouts, inflated 

holding costs, and disrupted service delivery (Basten & 

Ryan, 2019; Delnaz et al., 2023). Maintenance management, 

on the other hand, plays a pivotal role in sustaining 

equipment reliability and minimizing unplanned downtime. 

Whether preventive, predictive, or corrective, maintenance 

approaches must be strategically orchestrated to preserve 

equipment functionality at the lowest possible cost (Hajej et 

al., 2022; Wang et al., 2021). The integration of these two 

domains—inventory and maintenance—can yield 

synergistic benefits in terms of efficiency, risk reduction, 

and long-term value creation (Achamrah et al., 2022; 

Karabağ et al., 2020). 

Recent developments in digitalization, artificial 

intelligence, and data analytics have transformed traditional 

practices into dynamic, responsive systems. For instance, 

reinforcement learning models now support predictive 

inventory management with real-time adaptability to 

demand fluctuations (Cuartas & Aguilar, 2023). Similarly, 

decision support systems using augmented reality and IoT 

facilitate rapid diagnostics and maintenance planning 

(Shirzadi & Tavakkolan, 2022; Sitompul & Rohmat, 2021). 

The adoption of integrated systems such as ERP and CMMS 

further strengthens data visibility and cross-departmental 

collaboration (Fakhimi Hosseinzadeh et al., 2023; Kaya & 

Ulutagay, 2023). These tools collectively enhance decision-

making quality, reduce manual error, and contribute to a 

responsive supply-maintenance ecosystem (Dey & Seok, 

2022; Xie et al., 2024). 

A growing body of literature has emphasized the 

importance of adopting optimization-based approaches in 

inventory and maintenance strategy formulation. Multi-

objective evolutionary algorithms, genetic algorithms, and 

fuzzy inference systems are increasingly applied to solve 

complex decision-making problems with multiple 

conflicting objectives—such as minimizing costs while 

maximizing service levels and equipment uptime (Adabbo et 

al., 2025; Cacereño et al., 2023; Kaya & Ulutagay, 2023). 

These advanced computational methods allow for the 

simultaneous consideration of constraints such as stochastic 

demand, lead time variability, equipment deterioration, and 

resource limitations (Yang et al., 2020; Zhang et al., 2021). 

As a result, hybrid models have emerged that jointly 

optimize inventory parameters and maintenance schedules, 

yielding solutions that are both efficient and resilient 

(Rivera-Gómez et al., 2019; Zhang et al., 2024). 

Another significant dimension in the optimization of 

inventory and maintenance systems is the economic impact 

of decision outcomes. Various studies have modeled the 

opportunity costs associated with unplanned downtime, 

backorders, and delayed maintenance interventions. For 

example, in the water utility sector, external costs of service 

interruptions have been shown to directly affect 

organizational efficiency and stakeholder satisfaction 

(Maziotis et al., 2020; Sarfaraz et al., 2023). These insights 

underscore the necessity of integrating cost metrics—such 

as holding cost, shortage cost, ordering cost, and 

maintenance cost—into strategic models (Alamri & Mo, 

2023; San-José et al., 2023). As the industry shifts toward 

data-driven management, cost-benefit analysis and risk-

based evaluation have become essential tools for evidence-

based decision-making (Pasupuleti, 2025; Wang et al., 

2024). 

Moreover, maintenance decisions should not be viewed 

in isolation but rather as part of a holistic asset management 

framework. Advanced models now incorporate the life cycle 

costs of equipment and factor in wear-and-tear patterns, 

condition-based monitoring data, and service history to 

refine maintenance schedules and inventory allocations 

(Abdul-Malak et al., 2019; Hashemian et al., 2021). Joint 

optimization approaches, for example, account for 

equipment degradation rates and failure probabilities to align 

maintenance tasks with inventory availability (Dinh et al., 

2022). The interplay between preventive and corrective 

strategies, and their dependence on the timely availability of 

spare parts, has also been a critical focus of optimization 

research (Dursun et al., 2022; Kalantari et al., 2020). 

I 
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Importantly, decision-making in inventory and 

maintenance management must also incorporate planning 

and governance dimensions. Dynamic and uncertain 

environments—such as those characterized by supply chain 

disruptions, policy constraints, or fluctuating demand—

require scenario-based analysis and contingency planning 

(Khoshnevis et al., 2023; Shahrjerdi, 2022). The inclusion of 

decision-making tools such as the Delphi method, fuzzy 

logic, and simulation modeling has significantly contributed 

to improving policy robustness and operational agility 

(Salmasnia & Talesh-Kazemi, 2022; Taheri et al., 2022). 

Additionally, digital transformation initiatives that aim to 

digitize records, enhance traceability, and automate warning 

systems for critical components are central to building a 

forward-looking and resilient asset management system 

(Ingemarsdotter et al., 2021; Sarhadi & Asraei, 2021). 

The incorporation of artificial intelligence in maintenance 

and inventory optimization is gaining momentum in both 

research and practice. AI-based tools such as predictive 

analytics, machine learning models, and complex system 

simulators help in identifying patterns, predicting failures, 

and optimizing stock levels with minimal human 

intervention (Bukhsh et al., 2023; Delnaz et al., 2023). These 

technologies enable real-time updates, autonomous learning, 

and adaptive response mechanisms, all of which are crucial 

for managing complex supply and maintenance systems 

(Lönnrot, 2025; Wang et al., 2025). Consequently, 

organizations that embrace AI-driven approaches can expect 

to achieve higher levels of efficiency, reduced operational 

risk, and enhanced service quality. 

From a practical standpoint, the application of integrated 

inventory-maintenance models is particularly valuable in 

utility services and critical infrastructure sectors. For 

instance, water and wastewater companies must maintain 

continuity of service despite aging infrastructure, budget 

constraints, and rising customer expectations (Shahrjerdi, 

2022; Silva, 2023). In this context, decision-makers must 

balance the trade-offs between cost, availability, and risk—

requiring frameworks that consolidate technical, economic, 

and operational considerations into a unified optimization 

model (Cacereño et al., 2023; San-José et al., 2023). This 

necessitates not only technological integration but also 

institutional commitment to proactive asset management and 

interdepartmental coordination (Alamri & Mo, 2023; 

Fakhimi Hosseinzadeh et al., 2023). 

In summary, the convergence of digital technologies, 

advanced optimization techniques, and data-centric 

management philosophies is redefining the landscape of 

inventory and maintenance control. The evolution from 

reactive, siloed operations to integrated, strategic systems 

marks a paradigm shift in how organizations approach asset 

reliability and operational efficiency. The present study 

builds upon this foundation to develop a comprehensive 

model that identifies and classifies the key components of 

inventory and maintenance control through the lens of cost 

and time optimization.  

2. Methods and Materials 

The present study, which aims to identify the components 

of inventory control and maintenance with a cost and time 

optimization approach, follows a qualitative research design 

and applies a library-based research method using the meta-

synthesis technique in the field of smart production. Meta-

synthesis is a type of meta-study that systematically reviews 

sources to extract, assess, synthesize, and, if necessary, 

statistically summarize research that has been previously 

conducted on a specific subject area. In fact, in meta-

synthesis, data and findings extracted from other related and 

similar studies are reviewed and analyzed. In this context, 

the data collected from these studies are qualitative rather 

than quantitative. Consequently, the sample selected for the 

meta-synthesis is formed based on its relevance to the 

research question. Meta-synthesis is not merely an integrated 

review of qualitative principles or secondary and primary 

data analysis from selected studies; rather, it involves the 

interpretation of the findings of those studies. In other words, 

meta-synthesis is the synthesis of interpretations of the 

primary data from selected studies. The ATLAS.ti software 

was used for the analysis. 

3. Findings and Results 

As previously mentioned, meta-synthesis analysis 

includes seven steps. In this section, the results for each of 

these steps are presented separately. 

Step 1: Formulating the Fundamental Research 

Questions 

The first step in the Sandelowski and Barroso method 

involves formulating the research questions. These questions 

are generally structured around four parameters: what, who, 

when, and how. After aligning the research questions with 

the study's objectives, the systematic literature review 

begins. Table 1 presents responses to these fundamental 

questions related to the meta-synthesis method: 

https://journals.kmanpub.com/index.php/jppr/index
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Table 1 

Research Questions 

Parameter Research Question 

What Identifying the components of inventory control and maintenance with a cost and time optimization approach 

Who Various works including books, articles, and reports on inventory control and maintenance with a cost and time optimization approach 

When Covers all works published between 2000 and 2024 

How Thematic analysis, identification and note-taking, key points extraction, and concept analysis 

Table 2 

Identification of Keywords for Step Two of the Meta-synthesis Method 

Persian Equivalent of Key Concepts English Keywords Used for Search 

سازی هزینه و زمانکنترل موجودی و نگهداری با رویکرد بهینه  Inventory and maintenance control with a cost and time optimization approach 

سازی هزینه و زمان کنترل موجودی و نگهداری با رویکرد بهینه

فاضلاب در شرکت آب و   

Inventory and maintenance control with a cost and time optimization approach in a 

water and wastewater company 

 Inventory and maintenance control in a water and wastewater company کنترل موجودی و نگهداری در شرکت آب و فاضلاب 

Step 2: Systematic Review of Literature 

For data collection, secondary data in the form of 

previous documents and records were used. As previously 

mentioned, the two major databases selected for this purpose 

were Scopus and Web of Science.  

Additionally, in regard to Persian-language articles, the 

Scientific Information Database (SID) and the 

Comprehensive Portal of Humanities were utilized. 

Step 3: Searching and Selecting Literature 

Table 3 outlines the steps taken to refine the extracted 

articles. Based on this table, four stages were followed to 

refine the articles drawn from the literature. The final stage 

relied on the opinions of five expert reviewers involved in 

this research. These experts evaluated the final quality of the 

selected articles based on a specific evaluation approach 

(introduced below). Articles that did not meet the established 

threshold were excluded from the process. 

Figure 1 

Review and Selection Process 

 

Total studies retrieved (N = 198) 

Total abstracts screened 

Total full texts reviewed 

Studies selected for appraisal 

Final studies included (N = 35) 

Studies excluded due to 

irrelevant titles (N = 43) 

Studies excluded due to 

unsuitable abstracts (N = 55) 

Studies excluded due to 

inadequate content (N = 25) 

Studies excluded after final 

appraisal (N = 40) 
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After eliminating studies that were inconsistent with the 

research objectives and questions, the researcher evaluated 

the methodological quality of the remaining studies. The aim 

of this step was to remove studies whose findings were 

deemed unreliable. The tool commonly used for evaluating 

the quality of primary qualitative studies is the Critical 

Appraisal Skills Programme (CASP). This tool includes ten 

questions that help assess the rigor, validity, and relevance 

of qualitative research. These questions focus on the 

following criteria: 

1. Research objectives 

2. Methodological rationale 

3. Research design 

4. Sampling method 

5. Data collection 

6. Reflexivity (referring to the researcher-participant 

relationship) 

7. Ethical considerations 

8. Accuracy of data analysis 

9. Clear articulation of findings 

10. Research value. 

Table 3 

Selected Articles 

Article 
Code 

Title Score 

S01 Optimisation of Preventive Maintenance Regime Based on Failure Mode System Modelling Considering Reliability 44 

S02 A Proposed Optimization Model for Maximizing the Mean Time Between Failures in Urban Water Networks Considering Cost 
and Environmental Aspects 

42 

S03 The Value of Maintenance Delay Flexibility for Improved Spare Parts Inventory Management 38 

S04 Simultaneous Optimization of Design and Maintenance for Systems Using Multi-Objective Evolutionary Algorithms and Discrete 
Simulation 

39 

S05 Improving Inventory and Procurement Management Through Business Intelligence 43 

S06 A Framework for Assessing Maintenance System Performance in Water and Wastewater Companies: Case Study of Alborz 
Province Water and Wastewater Company 

42 

S07 A Maintenance Planning Framework Using Online and Offline Deep Reinforcement Learning 41 

S08 Hybrid Algorithm Based on Reinforcement Learning for Smart Inventory Management 40 

S09 Integrating Inventory Planning, Pricing, and Maintenance for Perishable Products in a Two-Component Parallel Manufacturing 
System with Common Cause Failures 

38 

S10 Joint Production and Preventive Maintenance Scheduling for a Single Degraded Machine Considering Machine Failures 32 

S11 A Decision Support System Model to Enhance Equipment Maintenance Management Based on Augmented Reality Considering 
Maintenance Priorities 

40 

S12 Profit Maximization in an Inventory System with Time-Varying Demand, Partial Backordering, and Discrete Inventory Cycle 43 

S13 Joint Integrated Production-Maintenance Policy with Production Plan Smoothing Through Production Rate Control 39 

S14 A Heuristic Multi-Criteria Classification Method for Spare Parts Management Policy Selection: Case Study of East Azerbaijan 
Province Water and Wastewater Company 

40 

S15 Asset Management Analytics for Urban Water Mains: A Literature Review 40 

S16 Pathology of the Maintenance Structure Regarding the Foundation for Physical Asset Management in East Azerbaijan Province 
Water and Wastewater Company 

44 

S17 Maintaining Systems with Heterogeneous Spare Parts 32 

S18 Intelligent Inventory Management with Autonomation and Service Strategy 32 

S19 Joint Condition-Based Maintenance and Inventory Optimization for Systems with Multiple Components 31 

S20 Impact of External Costs of Unplanned Supply Interruptions on Water Company Efficiency: Evidence from Chile 37 

S21 Multi-Level Opportunistic Predictive Maintenance for Multi-Component Systems with Economic Dependence and 
Assembly/Disassembly Impacts 

31 

S22 Evaluation of Preventive Maintenance (PM) System Performance with an Optimal Operation Approach in Distribution Networks 33 

S23 Joint Optimization of Preventive Maintenance and Inventory Management for Standby Systems with Hybrid-Deteriorating Spare 
Parts 

32 

S24 Optimal Production, Pricing, and Substitution Policies in Continuous Review Production-Inventory Systems 38 

S25 Reliability-Based Opportunistic Maintenance Modeling for Multi-Component Systems with Economic Dependence Under Base 
Warranty 

31 

S26 Spare Parts Inventory Routing Problem with Transshipment and Substitutions Under Stochastic Demands 39 

S27 Age-Based Maintenance Under Population Heterogeneity: Optimal Exploration and Exploitation 40 

S28 Challenges and Solutions in Condition-Based Maintenance Implementation – A Multiple Case Study 41 

S29 IoT-Based Running Time Monitoring System for Machine Preventive Maintenance Scheduling 44 

S30 An Integrated Model of Production, Maintenance, and Quality Control with Statistical Process Control Chart of a Supply Chain 32 

S31 Integrated Optimization of Maintenance Interventions and Spare Part Selection for a Partially Observable Multi-Component 
System 

32 

S32 Inventory and Maintenance Optimization of Condition-Based Maintenance Using Fuzzy Inference System 40 

S33 A Theoretical Framework for Risk–Cost-Optimized Maintenance Strategy for Structures 40 

S34 Assessing Repair and Maintenance Efficiency for Water Suppliers: A Novel Hybrid USBM-FIS Framework 42 

S35 Joint Optimization of Maintenance, Buffer, and Spare Parts for a Production System 44 
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Step Four: Data Extraction 

This step involves reviewing the remaining articles and 

extracting texts for coding in the next phase. It focuses on 

separating results, outputs, and the interpretations of those 

outputs, along with the final discussion and conclusions of 

the researchers. At this stage, 35 articles were imported into 

MAXQDA software. To conduct an initial examination, 

portions of the articles were reviewed selectively and 

randomly coded in a scattered manner to familiarize the 

researcher with the existing data. In this way, the researcher 

gained an understanding of the general themes and the 

overarching research environment. The codes and their 

meanings are specified in Table 3. 

Table 4 

Extraction of Initial Codes 

Indicator Concept 

Safety Stock Level The minimum inventory required to prevent stockouts under unforeseen circumstances. 

Inventory Turnover Rate The number of times inventory is sold or used during a specific period; indicates 

warehouse efficiency. 

Average Lead Time The average time between placing an order and receiving the goods. 

Excess Inventory Rate The percentage of items held in excess of actual demand. 

Obsolete or Unused Item Rate The percentage of items that remain unused or are no longer usable. 

Inventory Holding Cost Costs such as warehousing, insurance, depreciation, and capital lock-up for storing goods. 

Forecast Accuracy The degree of alignment between demand forecasts and actual demand. 

Reorder Point Level The inventory level at which a new order should be placed. 

Equipment Failure Rate The number of equipment breakdowns within a specified time period. 

Mean Time Between Failures (MTBF) The average time equipment operates without failure. 

Mean Time to Repair (MTTR) The average time spent repairing equipment. 

Monthly/Annual Preventive Maintenance Cost The cost of regular servicing to prevent equipment breakdown. 

Ratio of Corrective to Preventive Maintenance A measure of organizational dependence on reactive versus planned maintenance. 

Downtime Due to Failures The proportion of operational stoppage time caused by equipment failures. 

Spare Part Availability Time The time it takes to provide the required spare part for repairs. 

Total Annual Equipment Maintenance Cost The total of all direct and indirect maintenance costs for equipment in one year. 

Annual Spare Part Consumption Cost The cost of purchasing or using spare parts during the year. 

Spare Part Inventory Holding Cost Costs associated with storing and maintaining spare parts. 

Downtime Cost Losses incurred from production or service interruptions due to equipment failure. 

Reorder Processing Cost Administrative and operational expenses for each reorder of a spare part. 

Breakdown Response Time The time maintenance teams take from receiving a breakdown report to initiating the 

repair. 

Order-to-Delivery Time for Spare Parts The total time required to procure a part, from order placement to receipt. 

Waiting Time for Scheduled Servicing The time equipment remains idle awaiting scheduled maintenance. 

Reordering Cycle Time for High-Use Parts The average time between successive orders of frequently used parts. 

Time Spent on Future Inventory Needs Analysis and 

Planning 

The duration allocated to analyzing demand and developing supply plans. 

Use of ERP/CMMS Systems for Maintenance and 

Inventory 

The extent to which integrated maintenance or enterprise resource planning systems are 

utilized. 

Traceability of Items in Inventory System The system’s ability to track the movement of each item or spare part in and out of 

inventory. 

Automation Level of Critical Item Alert Systems The presence of automated systems that alert when critical inventory thresholds are 

reached. 

Percentage of Digitized Records in Inventory and 

Maintenance 

The degree to which paper-based processes in inventory and maintenance management 

are digitized. 

Frequency of Inventory Level Reviews The number of times inventory levels are reviewed and adjusted annually. 

Coordination Rate Between Maintenance and Inventory 

Departments 

The extent of operational alignment and collaboration between the supply and 

maintenance departments. 

Number of Revised Policies for Resource Optimization The number of updated policies aimed at improving operational performance. 

Percentage of Predictive Model Usage in Maintenance The extent to which algorithms and forecasting models are used in maintenance and 

reordering decisions. 

 

Step Five: Qualitative Findings Analysis 

During the analysis process, the researcher seeks themes 

that emerge across the studies included in the meta-

synthesis. This is known as thematic analysis. Once themes 

are identified and clarified, the reviewer constructs a 

classification framework and places related or similar 

categories under a theme that best describes them. These 

themes form the foundation for constructing explanations, 
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patterns, theories, or hypotheses. In this study, all extracted 

factors from the reviewed studies were initially considered 

as codes. Subsequently, based on the meaning of each, the 

codes were grouped into similar conceptual categories. 

These similar concepts were then organized into explanatory 

categories, which led to the identification of the core and 

sub-components of the research indicators. In Table 4, each 

article is cited by the letter "S" followed by its assigned 

number. 

Table 5 

Main Categories and Related Codes 

Dimension Indicator Source 

Inventory Control Safety stock level S22, S17, S29, S30, S31  

Inventory turnover rate S14, S16, S19, S22, S26, S35  

Average lead time S1, S17, S19, S22, S28  

Excess inventory rate S3, S4, S6, S17, S30  

Obsolete or unused item rate S2, S4, S8, S9, S18, S28, S31, S34, S35  

Inventory holding cost S23, S34, S35  

Demand forecast accuracy S3, S18, S20, S22, S25  

Reorder point level S16, S17, S27, S29, S30, S33, S34, S35 

Maintenance and Repair Equipment failure rate S22, S26, S27, S29, S30, S31  

Mean time between failures (MTBF) S1, S6, S10, S20, S30, S33  

Mean time to repair (MTTR) S1, S6, S9, S19, S21, S23  

Monthly/Annual preventive maintenance cost S2, S5, S7, S9, S17, S18, S32  

Corrective-to-preventive maintenance ratio S27, S29, S30, S31, S33  

Downtime due to failures S1, S2, S3, S4, S6, S19, S20, S22, S24, S27, S28, 

S29  

Spare part availability time S10, S14, S16, S33, S35 

Cost-Related Total annual equipment maintenance cost S2, S5, S7, S9, S18, S24  

Annual spare part consumption cost S15, S17, S22, S23, S34  

Spare part inventory holding cost S1, S6, S10, S20, S30, S33  

Downtime cost S1, S3, S6, S8, S10, S11, S17, S22  

Reorder processing cost S15, S18, S22, S25, S26 

Time-Related Breakdown response time S22, S17, S29, S30, S31  

Spare part order-to-delivery time S4, S6, S8, S10, S11, S12  

Waiting time for scheduled servicing S3, S16, S19, S32, S33, S34  

Reordering cycle time for high-use parts S2, S14, S18, S19, S21  

Time for future inventory planning and analysis S25, S26, S31, S33 

Technology and Information 

Systems 

Use of ERP/CMMS systems for maintenance and inventory S2, S4, S8, S11, S17, S23 

 

Traceability of items in inventory system S10, S16, S27, S9, S21, S22, S31  

Automation level of critical item alert system S18, S19, S24, S26, S28  

Percentage of digitized records in inventory and 

maintenance 

S13, S17, S18, S22, S28, S29, S30 

Planning and Decision-Making Inventory level review frequency S5, S7, S23, S26, S12, S15, S18  

Coordination between maintenance and inventory 

departments 

S4, S9, S10, S17, S18, S30, S32, S34 

 

Number of revised policies for resource optimization S4, S6, S8, S10, S11, S12  

Percentage use of predictive models for maintenance S3, S16, S19, S32, S33, S34 

Step Six: Quality Control of the Analysis 

To evaluate the reliability of the meta-synthesis, one 

selected document was reviewed by an expert. Following the 

assessment, a Kappa coefficient of 0.755 was calculated. A 

Kappa coefficient above 0.60 is considered satisfactory. 

Step Seven: Presentation of Report and Research 

Findings 

At this stage, the findings are presented graphically. A 

total of 6 dimensions and 33 indicators were identified for 

the model. The dimensions are illustrated in the figure. 
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Figure 2 

Components of Inventory Control and Maintenance with a Cost and Time Optimization Approach 

 

4. Discussion and Conclusion 

The present study aimed to identify the key dimensions 

and indicators of inventory and maintenance control with an 

emphasis on cost and time optimization, using a meta-

synthesis of 35 relevant studies. The results revealed six 

major dimensions—inventory control, maintenance and 

repair, cost-related, time-related, technology and 

information systems, and planning and decision-making—

encompassing a total of 33 specific indicators. These 

findings offer a comprehensive and multidimensional 

framework that integrates operational, technological, and 

strategic components of inventory and maintenance systems. 

The inventory control dimension included indicators such 

as safety stock levels, inventory turnover rate, lead time, 

excess inventory, obsolete items, and forecast accuracy. 

These findings are consistent with prior research that 

highlights the importance of balancing inventory availability 

with demand uncertainty to avoid both stockouts and 

overstocking (Basten & Ryan, 2019; San-José et al., 2023). 

For instance, accurate demand forecasting and real-time 

inventory tracking have been emphasized as critical for 

reducing holding costs and improving replenishment 

efficiency (Cuartas & Aguilar, 2023; Dey & Seok, 2022). 

The identification of reorder point levels and inventory 

review frequency aligns with models that integrate dynamic 

inventory planning and probabilistic demand management 

(Achamrah et al., 2022; Salmasnia & Talesh-Kazemi, 2022). 

These indicators, collectively, demonstrate the necessity for 

continuous monitoring and adjustment of inventory 

strategies, particularly in capital-intensive sectors like water 

and wastewater utilities. 

The maintenance and repair dimension included critical 

performance metrics such as equipment failure rate, mean 

time between failures (MTBF), mean time to repair (MTTR), 

the cost of preventive maintenance, and the ratio of 

corrective to preventive interventions. These indicators 

mirror the consensus in the literature regarding the role of 

predictive and condition-based maintenance in reducing 

downtime and enhancing asset reliability (Dinh et al., 2022; 

Karabağ et al., 2020; Yang et al., 2020). Studies have shown 

that improving MTBF and reducing MTTR can directly 

lower operational disruptions and support cost minimization 

objectives (Wang et al., 2021; Zhang et al., 2021). The 

emphasis on access time to spare parts also supports earlier 

findings on the interdependence between maintenance 

scheduling and spare parts logistics (Abdul-Malak et al., 

2019; Alamri & Mo, 2023). Moreover, integrating 

maintenance metrics with ERP/CMMS platforms enables 

real-time performance tracking and better prioritization of 

interventions (Fakhimi Hosseinzadeh et al., 2023; Kaya & 

Ulutagay, 2023). 

The cost dimension was found to be cross-cutting and 

deeply interconnected with the other dimensions. Key cost-

related indicators identified included total maintenance cost 

per year, cost of spare parts, inventory holding cost, cost of 

downtime, and reorder costs. These findings are supported 

by studies that advocate for total cost of ownership (TCO) 

approaches in maintenance and inventory decisions (Adabbo 

et al., 2025; Hashemian et al., 2021). Specifically, prior 

research has shown that poor inventory planning can lead to 

hidden costs such as backorders, service delays, and 

unscheduled downtime (Bukhsh et al., 2023; Maziotis et al., 

2020). The integration of cost indicators into performance 

https://journals.kmanpub.com/index.php/jppr/index


 Salavati et al.                                                                                                       Journal of Resource Management and Decision Engineering 3:2 (2024) 62-72 

 

 70 

evaluation frameworks is critical to achieving economic 

sustainability, particularly in public infrastructure settings 

where resource constraints are common (Sarfaraz et al., 

2023; Shahrjerdi, 2022). 

In the time dimension, indicators such as breakdown 

response time, part order-to-delivery time, waiting time for 

scheduled maintenance, and lead time for high-consumption 

items were identified. These temporal factors directly 

influence operational continuity and customer service levels 

(Cacereño et al., 2023; Delnaz et al., 2023). Aligning with 

previous studies, the findings suggest that time efficiency is 

not only a logistical issue but also a strategic imperative that 

influences broader performance outcomes (Ingemarsdotter 

et al., 2021; Sitompul & Rohmat, 2021). For example, IoT-

based monitoring systems can significantly reduce the 

response and repair cycle times by providing real-time alerts 

and enabling remote diagnostics (Shirzadi & Tavakkolan, 

2022; Wang et al., 2025). 

The technology and information systems dimension 

emerged as a key enabler of integration and efficiency. 

Indicators such as the use of ERP/CMMS systems, item 

traceability, digitalization of records, and automation of alert 

systems for critical components are consistent with the 

digital transformation trends in asset management 

(Pasupuleti, 2025; Wang et al., 2024). The digitization of 

inventory and maintenance data enhances decision accuracy 

and enables predictive modeling capabilities (Dey & Seok, 

2022; Xie et al., 2024). Furthermore, traceability and 

automation help reduce administrative workload, prevent 

errors, and improve compliance with safety and performance 

standards (Fakhimi Hosseinzadeh et al., 2023; San-José et 

al., 2023). 

Lastly, the planning and decision-making dimension 

incorporated indicators such as inventory review frequency, 

cross-functional coordination, number of revised policies, 

and the use of predictive models. This highlights the shift 

from reactive to strategic asset management, where 

continuous improvement, stakeholder engagement, and 

scenario planning are central (Kalantari et al., 2020; Taheri 

et al., 2022). Prior research emphasizes that effective 

governance structures and decision-making processes are 

vital for the successful implementation of optimization 

strategies (Khoshnevis et al., 2023; Shahrjerdi, 2022). The 

findings also echo calls for enhanced coordination between 

maintenance and inventory departments to reduce lead times 

and resource redundancies (Alamri & Mo, 2023; Sarhadi & 

Asraei, 2021). 

Collectively, the six dimensions and 33 indicators 

identified in this study present a validated, multi-

dimensional framework for analyzing and improving 

inventory and maintenance systems with a cost-time 

optimization lens. The alignment of findings with the 

broader literature confirms the robustness and applicability 

of the proposed framework across various industrial 

contexts. It also reinforces the importance of integrating 

operational metrics with technology adoption and strategic 

planning to achieve sustainable performance outcomes. 

Despite its contributions, the study is not without 

limitations. First, the reliance on secondary data from 

published literature may introduce selection bias, as only 

peer-reviewed and accessible sources were included. Some 

relevant studies or case-specific insights may have been 

excluded due to database restrictions or publication 

language. Second, although meta-synthesis allows for the 

integration of qualitative findings, it lacks the empirical 

granularity provided by field data or quantitative 

simulations. As such, the practical applicability of the 

indicators may vary across industries with different 

operational constraints. Finally, the coding and classification 

processes, while systematic, remain inherently interpretive, 

which may affect the generalizability of the categorization. 

Future research should focus on empirically validating 

the proposed framework across diverse industries and 

geographical regions. Case studies or field experiments 

involving utility companies, manufacturing firms, or 

logistics providers can provide real-world insights into the 

implementation feasibility and outcomes of the framework. 

Additionally, integrating real-time data analytics and digital 

twin models could enhance predictive accuracy and decision 

support. Researchers may also explore the development of 

industry-specific key performance indicators (KPIs) and 

customizable dashboards to support continuous monitoring 

and dynamic policy adjustment. 

Practitioners should prioritize the integration of inventory 

and maintenance management functions through centralized 

digital platforms such as ERP and CMMS. Emphasis should 

be placed on data quality, real-time tracking, and the use of 

predictive analytics to enhance responsiveness. 

Organizations should also invest in staff training and cross-

departmental collaboration to ensure alignment of 

operational and strategic objectives. Finally, the continuous 

review and revision of inventory and maintenance policies 

based on performance data and environmental changes will 

be essential for sustaining competitive advantage and service 

excellence. 
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